Effective theories of dark mesons with custodial symmetry

  • Graham D. KribsEmail author
  • Adam Martin
  • Tom Tong
Open Access
Regular Article - Theoretical Physics


Dark mesons are bosonic composites of a new, strongly-coupled sector beyond the Standard Model. We consider several dark sectors with fermions that transform under the electroweak group, as arise from a variety of models including strongly-coupled theories of dark matter (e.g., stealth dark matter), bosonic technicolor (strongly-coupled indcued electroweak symmetry breaking), vector-like confinement, etc. We consider theories with two and four flavors under an SU(N) strong group that acquire variously chiral, vector-like, and mixed contributions to their masses. We construct the non-linear sigma model describing the dark pions and match the ultraviolet theory onto a low energy effective theory that provides the leading interactions of the lightest dark pions with the Standard Model. We uncover two distinct classes of effective theories that are distinguishable by how the lightest dark pions decay: “Gaugephilic”: where π0Zh, π±W h dominate once kinematically open, and “Gaugephobic”: where \( {\pi}^0\to \overline{f}f \), \( {\pi}^{\pm}\to \overline{f}^{\prime }f \) dominate. Custodial SU(2) plays a critical role in determining the “philic” or “phobic” nature of a model. In dark sectors that preserve custodial SU(2), there is no axial anomaly, and so the decay π0γγ is highly suppressed. In a companion paper, we study dark pion production and decay at colliders, obtaining the constraints and sensitsivity at the LHC.


Beyond Standard Model Technicolor and Composite Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E.H. Simmons, Phenomenology of a Technicolor Model With Heavy Scalar Doublet, Nucl. Phys.B 312 (1989) 253 [INSPIRE].
  2. [2]
    S. Samuel, Bosonic technicolor, Nucl. Phys.B 347 (1990) 625 [INSPIRE].
  3. [3]
    M. Dine, A. Kagan and S. Samuel, Naturalness in Supersymmetry, or Raising the Supersymmetry Breaking Scale, Phys. Lett.B 243 (1990) 250 [INSPIRE].
  4. [4]
    A. Kagan and S. Samuel, The Family mass hierarchy problem in bosonic technicolor, Phys. Lett.B 252 (1990) 605 [INSPIRE].
  5. [5]
    A. Kagan and S. Samuel, Renormalization group aspects of bosonic technicolor, Phys. Lett.B 270 (1991) 37 [INSPIRE].
  6. [6]
    C.D. Carone and E.H. Simmons, Oblique corrections in technicolor with a scalar, Nucl. Phys.B 397 (1993) 591 [hep-ph/9207273] [INSPIRE].
  7. [7]
    C.D. Carone and H. Georgi, Technicolor with a massless scalar doublet, Phys. Rev.D 49 (1994) 1427 [hep-ph/9308205] [INSPIRE].
  8. [8]
    B.A. Dobrescu and J. Terning, Negative contributions to S in an effective field theory, Phys. Lett.B 416 (1998) 129 [hep-ph/9709297] [INSPIRE].
  9. [9]
    M. Antola, M. Heikinheimo, F. Sannino and K. Tuominen, Unnatural Origin of Fermion Masses for Technicolor, JHEP03 (2010) 050 [arXiv:0910.3681] [INSPIRE].ADSzbMATHGoogle Scholar
  10. [10]
    A. Azatov, J. Galloway and M.A. Luty, Superconformal Technicolor, Phys. Rev. Lett.108 (2012) 041802 [arXiv:1106.3346] [INSPIRE].
  11. [11]
    A. Azatov, J. Galloway and M.A. Luty, Superconformal Technicolor: Models and Phenomenology, Phys. Rev.D 85 (2012) 015018 [arXiv:1106.4815] [INSPIRE].
  12. [12]
    T. Gherghetta and A. Pomarol, A Distorted MSSM Higgs Sector from Low-Scale Strong Dynamics, JHEP12 (2011) 069 [arXiv:1107.4697] [INSPIRE].ADSzbMATHGoogle Scholar
  13. [13]
    J. Galloway, M.A. Luty, Y. Tsai and Y. Zhao, Induced Electroweak Symmetry Breaking and Supersymmetric Naturalness, Phys. Rev.D 89 (2014) 075003 [arXiv:1306.6354] [INSPIRE].
  14. [14]
    S. Chang, J. Galloway, M. Luty, E. Salvioni and Y. Tsai, Phenomenology of Induced Electroweak Symmetry Breaking, JHEP03 (2015) 017 [arXiv:1411.6023] [INSPIRE].ADSGoogle Scholar
  15. [15]
    H. Beauchesne, K. Earl and T. Grégoire, The spontaneous2breaking Twin Higgs, JHEP01 (2016) 130 [arXiv:1510.06069] [INSPIRE].
  16. [16]
    R. Harnik, K. Howe and J. Kearney, Tadpole-Induced Electroweak Symmetry Breaking and PNGB Higgs Models, JHEP03 (2017) 111 [arXiv:1603.03772] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T. Alanne, M.T. Frandsen and D. Buarque Franzosi, Testing a dynamical origin of Standard Model fermion masses, Phys. Rev.D 94 (2016) 071703 [arXiv:1607.01440] [INSPIRE].
  18. [18]
    J. Galloway, A.L. Kagan and A. Martin, A UV complete partially composite-PNGB Higgs, Phys. Rev.D 95 (2017) 035038 [arXiv:1609.05883] [INSPIRE].
  19. [19]
    A. Agugliaro, O. Antipin, D. Becciolini, S. De Curtis and M. Redi, UV complete composite Higgs models, Phys. Rev.D 95 (2017) 035019 [arXiv:1609.07122] [INSPIRE].
  20. [20]
    D. Barducci, S. De Curtis, M. Redi and A. Tesi, An almost elementary Higgs: Theory and Practice, JHEP08 (2018) 017 [arXiv:1805.12578] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J.C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].
  22. [22]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].
  23. [23]
    O. Antipin and M. Redi, The Half-composite Two Higgs Doublet Model and the Relaxion, JHEP12 (2015) 031 [arXiv:1508.01112] [INSPIRE].ADSGoogle Scholar
  24. [24]
    B. Batell, M.A. Fedderke and L.-T. Wang, Relaxation of the Composite Higgs Little Hierarchy, JHEP12 (2017) 139 [arXiv:1705.09666] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Nussinov, Technocosmologycould a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett.B 165 (1985) 55 [INSPIRE].
  26. [26]
    R.S. Chivukula and T.P. Walker, Technicolor cosmology, Nucl. Phys.B 329 (1990) 445 [INSPIRE].
  27. [27]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak Fermion Number Violation and the Production of Stable Particles in the Early Universe, Phys. Lett.B 241 (1990) 387 [INSPIRE].
  28. [28]
    S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev.D 44 (1991) 3062 [INSPIRE].
  29. [29]
    D.B. Kaplan, A Single explanation for both the baryon and dark matter densities, Phys. Rev. Lett.68 (1992) 741 [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    R.S. Chivukula, A.G. Cohen, M.E. Luke and M.J. Savage, A Comment on the strong interactions of color-neutral technibaryons, Phys. Lett.B 298 (1993) 380 [hep-ph/9210274] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Bagnasco, M. Dine and S.D. Thomas, Detecting technibaryon dark matter, Phys. Lett.B 320 (1994) 99 [hep-ph/9310290] [INSPIRE].
  32. [32]
    M.Y. Khlopov and C. Kouvaris, Composite dark matter from a model with composite Higgs boson, Phys. Rev.D 78 (2008) 065040 [arXiv:0806.1191] [INSPIRE].
  33. [33]
    T.A. Ryttov and F. Sannino, Ultra Minimal Technicolor and its Dark Matter TIMP, Phys. Rev.D 78 (2008) 115010 [arXiv:0809.0713] [INSPIRE].
  34. [34]
    T. Hambye and M.H.G. Tytgat, Confined hidden vector dark matter, Phys. Lett.B 683 (2010) 39 [arXiv:0907.1007] [INSPIRE].
  35. [35]
    Y. Bai and R.J. Hill, Weakly Interacting Stable Pions, Phys. Rev.D 82 (2010) 111701 [arXiv:1005.0008] [INSPIRE].
  36. [36]
    R. Lewis, C. Pica and F. Sannino, Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors, Phys. Rev.D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].
  37. [37]
    M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP07 (2012) 015 [arXiv:1204.2808] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M.R. Buckley and E.T. Neil, Thermal dark matter from a confining sector, Phys. Rev.D 87 (2013) 043510 [arXiv:1209.6054] [INSPIRE].
  39. [39]
    S. Bhattacharya, B. Melić and J. Wudka, Pionic Dark Matter, JHEP02 (2014) 115 [arXiv:1307.2647] [INSPIRE].ADSzbMATHGoogle Scholar
  40. [40]
    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors, JHEP07 (2014) 116 [arXiv:1404.2794] [INSPIRE].
  41. [41]
    D. Marzocca and A. Urbano, Composite Dark Matter and LHC Interplay, JHEP07 (2014) 107 [arXiv:1404.7419] [INSPIRE].ADSGoogle Scholar
  42. [42]
    R. Pasechnik, V. Beylin, V. Kuksa and G. Vereshkov, Composite scalar Dark Matter from vector-like SU(2) confinement, Int. J. Mod. Phys.A 31 (2016) 1650036 [arXiv:1407.2392] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and Dark Matter scales from strong interactions, JHEP01 (2015) 157 [arXiv:1410.1817] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett.115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].
  45. [45]
    A. Carmona and M. Chala, Composite Dark Sectors, JHEP06 (2015) 105 [arXiv:1504.00332] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  46. [46]
    H.M. Lee and M.-S. Seo, Communication with SIMP dark mesons via Z -portal, Phys. Lett.B 748 (2015) 316 [arXiv:1504.00745] [INSPIRE].
  47. [47]
    Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP05 (2016) 090 [arXiv:1512.07917] [INSPIRE].
  48. [48]
    S. Bruggisser, F. Riva and A. Urbano, Strongly Interacting Light Dark Matter, SciPost Phys.3 (2017) 017 [arXiv:1607.02474] [INSPIRE].ADSGoogle Scholar
  49. [49]
    Y. Wu, T. Ma, B. Zhang and G. Cacciapaglia, Composite Dark Matter and Higgs, JHEP11 (2017) 058 [arXiv:1703.06903] [INSPIRE].ADSGoogle Scholar
  50. [50]
    H. Davoudiasl, P.P. Giardino, E.T. Neil and E. Rinaldi, Unified Scenario for Composite Right-Handed Neutrinos and Dark Matter, Phys. Rev.D 96 (2017) 115003 [arXiv:1709.01082] [INSPIRE].
  51. [51]
    A. Berlin, N. Blinov, S. Gori, P. Schuster and N. Toro, Cosmology and Accelerator Tests of Strongly Interacting Dark Matter, Phys. Rev.D 97 (2018) 055033 [arXiv:1801.05805] [INSPIRE].
  52. [52]
    S.-M. Choi, H.M. Lee, P. Ko and A. Natale, Resolving phenomenological problems with strongly-interacting-massive-particle models with dark vector resonances, Phys. Rev.D 98 (2018) 015034 [arXiv:1801.07726] [INSPIRE].
  53. [53]
    Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama and K. Schutz, Strongly interacting massive particles through the axion portal, Phys. Rev.D 98 (2018) 115031 [arXiv:1806.10139] [INSPIRE].
  54. [54]
    D. Spier Moreira Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite Inelastic Dark Matter, Phys. Lett.B 692 (2010) 323 [arXiv:0903.3945] [INSPIRE].
  55. [55]
    G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky Composite Dark Matter, Phys. Rev.D 81 (2010) 095001 [arXiv:0909.2034] [INSPIRE].
  56. [56]
    M. Lisanti and J.G. Wacker, Parity Violation in Composite Inelastic Dark Matter Models, Phys. Rev.D 82 (2010) 055023 [arXiv:0911.4483] [INSPIRE].
  57. [57]
    D. Spier Moreira Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, The Cosmology of Composite Inelastic Dark Matter, JHEP06 (2010) 113 [arXiv:1003.4729] [INSPIRE].
  58. [58]
    M. Geller, S. Iwamoto, G. Lee, Y. Shadmi and O. Telem, Dark quarkonium formation in the early universe, JHEP06 (2018) 135 [arXiv:1802.07720] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Dark Matter from new Technicolor Theories, Phys. Rev.D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].
  60. [60]
    D.D. Dietrich and F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher dimensional representations, Phys. Rev.D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].
  61. [61]
    R. Foadi, M.T. Frandsen and F. Sannino, Technicolor Dark Matter, Phys. Rev.D 80 (2009) 037702 [arXiv:0812.3406] [INSPIRE].
  62. [62]
    J. Mardon, Y. Nomura and J. Thaler, Cosmic Signals from the Hidden Sector, Phys. Rev.D 80 (2009) 035013 [arXiv:0905.3749] [INSPIRE].
  63. [63]
    F. Sannino, Conformal Dynamics for TeV Physics and Cosmology, Acta Phys. Polon.B 40 (2009) 3533 [arXiv:0911.0931] [INSPIRE].
  64. [64]
    R. Barbieri, S. Rychkov and R. Torre, Signals of composite electroweak-neutral Dark Matter: LHC/Direct Detection interplay, Phys. Lett.B 688 (2010) 212 [arXiv:1001.3149] [INSPIRE].
  65. [65]
    A. Belyaev, M.T. Frandsen, S. Sarkar and F. Sannino, Mixed dark matter from technicolor, Phys. Rev.D 83 (2011) 015007 [arXiv:1007.4839] [INSPIRE].
  66. [66]
    Lattice Strong Dynamics (LSD) collaboration, Lattice Calculation of Composite Dark Matter Form Factors, Phys. Rev.D 88 (2013) 014502 [arXiv:1301.1693] [INSPIRE].
  67. [67]
    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Composite Goldstone Dark Matter: Experimental Predictions from the Lattice, JHEP12 (2014) 130 [arXiv:1308.4130] [INSPIRE].ADSGoogle Scholar
  68. [68]
    J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev.D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].
  69. [69]
    Lattice Strong Dynamics (LSD) collaboration, Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction, Phys. Rev.D 89 (2014) 094508 [arXiv:1402.6656] [INSPIRE].
  70. [70]
    G. Krnjaic and K. Sigurdson, Big Bang Darkleosynthesis, Phys. Lett.B 751 (2015) 464 [arXiv:1406.1171] [INSPIRE].
  71. [71]
    W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and Indirect Detection, Phys. Rev.D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].
  72. [72]
    W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei II: Nuclear spectroscopy in two-color QCD, Phys. Rev.D 90 (2014) 114506 [arXiv:1406.4116] [INSPIRE].
  73. [73]
    J. Brod, J. Drobnak, A.L. Kagan, E. Stamou and J. Zupan, Stealth QCD-like strong interactions and the \( t\overline{t} \)asymmetry, Phys. Rev.D 91 (2015) 095009 [arXiv:1407.8188] [INSPIRE].
  74. [74]
    M. Asano and R. Kitano, Partially Composite Dark Matter, JHEP09 (2014) 171 [arXiv:1406.6374] [INSPIRE].ADSGoogle Scholar
  75. [75]
    T. Appelquist et al., Stealth Dark Matter: Dark scalar baryons through the Higgs portal, Phys. Rev.D 92 (2015) 075030 [arXiv:1503.04203] [INSPIRE].
  76. [76]
    T. Appelquist et al., Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability, Phys. Rev. Lett.115 (2015) 171803 [arXiv:1503.04205] [INSPIRE].ADSGoogle Scholar
  77. [77]
    V. Drach, A. Hietanen, C. Pica, J. Rantaharju and F. Sannino, Template Composite Dark Matter: SU(2) gauge theory with 2 fundamental flavours, PoS(LATTICE2015)234 (2016) [arXiv:1511.04370] [INSPIRE].
  78. [78]
    S. Fichet, Shining Light on Polarizable Dark Particles, JHEP04 (2017) 088 [arXiv:1609.01762] [INSPIRE].
  79. [79]
    R.T. Co, K. Harigaya and Y. Nomura, Chiral Dark Sector, Phys. Rev. Lett.118 (2017) 101801 [arXiv:1610.03848] [INSPIRE].ADSGoogle Scholar
  80. [80]
    K.R. Dienes, F. Huang, S. Su and B. Thomas, Dynamical Dark Matter from Strongly-Coupled Dark Sectors, Phys. Rev.D 95 (2017) 043526 [arXiv:1610.04112] [INSPIRE].
  81. [81]
    H. Ishida, S. Matsuzaki and Y. Yamaguchi, Bosonic-Seesaw Portal Dark Matter, Prog. Theor. Exp. Phys.2017 (2017) 103B01 [arXiv:1610.07137] [INSPIRE].
  82. [82]
    A. Francis, R.J. Hudspith, R. Lewis and S. Tulin, Dark matter from one-flavor SU(2) gauge theory, PoS(LATTICE2016)227 (2016) [arXiv:1610.10068] [INSPIRE].
  83. [83]
    S.J. Lonsdale, M. Schroor and R.R. Volkas, Asymmetric Dark Matter and the hadronic spectra of hidden QCD, Phys. Rev.D 96 (2017) 055027 [arXiv:1704.05213] [INSPIRE].
  84. [84]
    J.M. Berryman, A. de Gouvêa, K.J. Kelly and Y. Zhang, Dark Matter and Neutrino Mass from the Smallest Non-Abelian Chiral Dark Sector, Phys. Rev.D 96 (2017) 075010 [arXiv:1706.02722] [INSPIRE].
  85. [85]
    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Dark Matter as a weakly coupled Dark Baryon, JHEP10 (2017) 210 [arXiv:1707.05380] [INSPIRE].ADSzbMATHGoogle Scholar
  86. [86]
    A. Francis, R.J. Hudspith, R. Lewis and S. Tulin, Dark Matter from Strong Dynamics: The Minimal Theory of Dark Baryons, JHEP12 (2018) 118 [arXiv:1809.09117] [INSPIRE].ADSGoogle Scholar
  87. [87]
    G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys.A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].
  88. [88]
    C. Kilic, T. Okui and R. Sundrum, Vectorlike Confinement at the LHC, JHEP02 (2010) 018 [arXiv:0906.0577] [INSPIRE].ADSzbMATHGoogle Scholar
  89. [89]
    C. Kilic and T. Okui, The LHC Phenomenology of Vectorlike Confinement, JHEP04 (2010) 128 [arXiv:1001.4526] [INSPIRE].ADSzbMATHGoogle Scholar
  90. [90]
    R. Harnik, G.D. Kribs and A. Martin, Quirks at the Tevatron and Beyond, Phys. Rev.D 84 (2011) 035029 [arXiv:1106.2569] [INSPIRE].
  91. [91]
    R. Fok and G.D. Kribs, Chiral Quirkonium Decays, Phys. Rev.D 84 (2011) 035001 [arXiv:1106.3101] [INSPIRE].
  92. [92]
    Y. Bai and P. Schwaller, Scale of dark QCD, Phys. Rev.D 89 (2014) 063522 [arXiv:1306.4676] [INSPIRE].
  93. [93]
    Z. Chacko, D. Curtin and C.B. Verhaaren, A Quirky Probe of Neutral Naturalness, Phys. Rev.D 94 (2016) 011504 [arXiv:1512.05782] [INSPIRE].
  94. [94]
    K. Agashe, P. Du, S. Hong and R. Sundrum, Flavor Universal Resonances and Warped Gravity, JHEP01 (2017) 016 [arXiv:1608.00526] [INSPIRE].ADSzbMATHGoogle Scholar
  95. [95]
    S. Matsuzaki, K. Nishiwaki and R. Watanabe, Phenomenology of flavorful composite vector bosons in light of B anomalies, JHEP08 (2017) 145 [arXiv:1706.01463] [INSPIRE].
  96. [96]
    P. Draper, J. Kozaczuk and J.-H. Yu, Theta in new QCD-like sectors, Phys. Rev.D 98 (2018) 015028 [arXiv:1803.00015] [INSPIRE].
  97. [97]
    D. Buttazzo, D. Redigolo, F. Sala and A. Tesi, Fusing Vectors into Scalars at High Energy Lepton Colliders, JHEP11 (2018) 144 [arXiv:1807.04743] [INSPIRE].ADSGoogle Scholar
  98. [98]
    P. Schwaller, D. Stolarski and A. Weiler, Emerging Jets, JHEP05 (2015) 059 [arXiv:1502.05409] [INSPIRE].
  99. [99]
    T. Cohen, M. Lisanti and H.K. Lou, Semivisible Jets: Dark Matter Undercover at the LHC, Phys. Rev. Lett.115 (2015) 171804 [arXiv:1503.00009] [INSPIRE].
  100. [100]
    M. Freytsis, S. Knapen, D.J. Robinson and Y. Tsai, Gamma-rays from Dark Showers with Twin Higgs Models, JHEP05 (2016) 018 [arXiv:1601.07556] [INSPIRE].ADSGoogle Scholar
  101. [101]
    M. Kim, H.-S. Lee, M. Park and M. Zhang, Examining the origin of dark matter mass at colliders, Phys. Rev.D 98 (2018) 055027 [arXiv:1612.02850] [INSPIRE].
  102. [102]
    T. Cohen, M. Lisanti, H.K. Lou and S. Mishra-Sharma, LHC Searches for Dark Sector Showers, JHEP11 (2017) 196 [arXiv:1707.05326] [INSPIRE].ADSGoogle Scholar
  103. [103]
    H. Beauchesne, E. Bertuzzo, G. Grilli Di Cortona and Z. Tabrizi, Collider phenomenology of Hidden Valley mediators of spin 0 or 1/2 with semivisible jets, JHEP08 (2018) 030 [arXiv:1712.07160] [INSPIRE].
  104. [104]
    S. Renner and P. Schwaller, A flavoured dark sector, JHEP08 (2018) 052 [arXiv:1803.08080] [INSPIRE].ADSGoogle Scholar
  105. [105]
    R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed Dark Sectors with disappearing charged tracks, JHEP06 (2017) 119 [Erratum JHEP10 (2017) 061] [arXiv:1703.05327] [INSPIRE].
  106. [106]
    O. Buchmueller et al., Simplified Models for Displaced Dark Matter Signatures, JHEP09 (2017) 076 [arXiv:1704.06515] [INSPIRE].ADSGoogle Scholar
  107. [107]
    N. Daci, I. De Bruyn, S. Lowette, M.H.G. Tytgat and B. Zaldivar, Simplified SIMPs and the LHC, JHEP11 (2015) 108 [arXiv:1503.05505] [INSPIRE].ADSGoogle Scholar
  108. [108]
    Y. Hochberg, E. Kuflik and H. Murayama, Dark spectroscopy at lepton colliders, Phys. Rev.D 97 (2018) 055030 [arXiv:1706.05008] [INSPIRE].
  109. [109]
    T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP07 (2008) 008 [arXiv:0712.2041] [INSPIRE].ADSGoogle Scholar
  110. [110]
    J. Kang and M.A. Luty, Macroscopic Strings andQuirksat Colliders, JHEP11 (2009) 065 [arXiv:0805.4642] [INSPIRE].
  111. [111]
    R. Harnik and T. Wizansky, Signals of New Physics in the Underlying Event, Phys. Rev.D 80 (2009) 075015 [arXiv:0810.3948] [INSPIRE].
  112. [112]
    S. Knapen, S. Pagan Griso, M. Papucci and D.J. Robinson, Triggering Soft Bombs at the LHC, JHEP08 (2017) 076 [arXiv:1612.00850] [INSPIRE].ADSGoogle Scholar
  113. [113]
    A. Pierce, B. Shakya, Y. Tsai and Y. Zhao, Searching for confining hidden valleys at LHCb, ATLAS and CMS, Phys. Rev.D 97 (2018) 095033 [arXiv:1708.05389] [INSPIRE].
  114. [114]
    V. Beylin, M. Bezuglov, V. Kuksa and N. Volchanskiy, An analysis of a minimal vectorlike extension of the Standard Model, Adv. High Energy Phys.2017 (2017) 1765340 [arXiv:1611.06006] [INSPIRE].zbMATHGoogle Scholar
  115. [115]
    G.D. Kribs, A. Martin, B. Ostdiek and T. Tong, Dark Mesons at the LHC, arXiv:1809.10184 [INSPIRE].
  116. [116]
    Y. Bai and A. Martin, Topological Pions, Phys. Lett.B 693 (2010) 292 [arXiv:1003.3006] [INSPIRE].
  117. [117]
    P. Duka, J. Gluza and M. Zralek, Quantization and renormalization of the manifest left-right symmetric model of electroweak interactions, Annals Phys.280 (2000) 336 [hep-ph/9910279] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  118. [118]
    G. Buchalla, O. Catà and C. Krause, A Systematic Approach to the SILH Lagrangian, Nucl. Phys.B 894 (2015) 602 [arXiv:1412.6356] [INSPIRE].ADSzbMATHGoogle Scholar
  119. [119]
    N. Craig et al., Multi-Lepton Signals of Multiple Higgs Bosons, JHEP02 (2013) 033 [arXiv:1210.0559] [INSPIRE].ADSGoogle Scholar
  120. [120]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev.D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  121. [121]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept.459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  122. [122]
    T. Das, G.S. Guralnik, V.S. Mathur, F.E. Low and J.E. Young, Electromagnetic mass difference of pions, Phys. Rev. Lett.18 (1967) 759 [INSPIRE].ADSGoogle Scholar
  123. [123]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev.177 (1969) 2247 [INSPIRE].
  124. [124]
    M. Bando, T. Kugo and K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries, Phys. Rept.164 (1988) 217 [INSPIRE].ADSMathSciNetGoogle Scholar
  125. [125]
    R.S. Chivukula, N.D. Christensen and E.H. Simmons, Low-energy effective theory, unitarity and non-decoupling behavior in a model with heavy Higgs-triplet fields, Phys. Rev.D 77 (2008) 035001 [arXiv:0712.0546] [INSPIRE].
  126. [126]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, Front. Phys.80 (2000) 1 [INSPIRE].
  127. [127]
    G.D. Kribs, A. Martin and T. Tong, A composite theory of the Georgi-Machacek model, work in progress.Google Scholar
  128. [128]
    F. Nagel, New aspects of gauge-boson couplings and the Higgs sector, Ph.D. Thesis, Heidelberg University, Heidelberg Germany (2004).Google Scholar
  129. [129]
    M. Maniatis, A. von Manteuffel, O. Nachtmann and F. Nagel, Stability and symmetry breaking in the general two-Higgs-doublet model, Eur. Phys. J.C 48 (2006) 805 [hep-ph/0605184] [INSPIRE].ADSGoogle Scholar
  130. [130]
    B. Grzadkowski, M. Maniatis and J. Wudka, The bilinear formalism and the custodial symmetry in the two-Higgs-doublet model, JHEP11 (2011) 030 [arXiv:1011.5228] [INSPIRE].ADSzbMATHGoogle Scholar
  131. [131]
    H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev.D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].
  132. [132]
    H.E. Haber and R. Hempfling, The Renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev.D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].
  133. [133]
    A. Pomarol and R. Vega, Constraints on CP-violation in the Higgs sector from the rho parameter, Nucl. Phys.B 413 (1994) 3 [hep-ph/9305272] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OregonEugeneU.S.A.
  2. 2.Department of PhysicsUniversity of Notre DameSouth BendU.S.A.

Personalised recommendations