Advertisement

Uplifts of maximal supergravities and transitions to non-geometric vacua

  • Gianguido Dall’AgataEmail author
  • Gianluca Inverso
  • Paolo Spezzati
Open Access
Regular Article - Theoretical Physics

Abstract

We describe a new procedure to obtain consistent backgrounds that uplift vacua and deformations of various maximal gauged supergravities by taking a known solution and performing singular limits along the moduli space of the corresponding 4-dimensional theory. We then apply this procedure to the S3 × H2,2 background that provides the uplift of 4-dimensional Minkowski vacua of maximal supergravity with gauge group [SO(4) × SO(2)] ⋉ ℝ16. We find that the newly generated vacua are generally only locally geometric and correspond to asymmetric orbifolds, Q-flux backgrounds or combinations thereof. We also provide the uplift to eleven dimensions of all the four-parameter Cremmer-Scherk-Schwarz gaugings.

Keywords

String Duality Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev.D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev.D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    C. Hull and B. Zwiebach, Double field theory, JHEP09 (2009) 099 [arXiv:0904.4664] [INSPIRE].
  4. [4]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    C.M. Hull, Generalised geometry for M-theory, JHEP07 (2007) 079 [hep-th/0701203] [INSPIRE].
  6. [6]
    P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP09 (2008) 123 [arXiv:0804.1362] [INSPIRE].
  7. [7]
    C. Hillmann, E (7(7)) and d = 11 supergravity, Ph.D. thesis, Humboldt U., Berlin, 2008. arXiv:0902.1509 [INSPIRE].
  8. [8]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett.B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ+generalised geometry, connections and M-theory, JHEP02 (2014) 054 [arXiv:1112.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP01 (2013) 064 [arXiv:1208.5884] [INSPIRE].
  12. [12]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry II: E d(d) × ℝ+and M-theory, JHEP03 (2014) 019 [arXiv:1212.1586] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6)covariant form of M-theory and type IIB, Phys. Rev.D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
  14. [14]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev.D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  15. [15]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev.D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  16. [16]
    J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett.B 82 (1979) 60.Google Scholar
  17. [17]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys.B 153 (1979) 61 [INSPIRE].
  18. [18]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP11 (2011) 052 [Erratum ibid.11 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  19. [19]
    D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions, JHEP10 (2012) 174 [arXiv:1208.0020] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    E.T. Musaev, Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions, JHEP05 (2013) 161 [arXiv:1301.0467] [INSPIRE].
  21. [21]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal supergravity, JHEP06 (2013) 046 [arXiv:1302.5419] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys.65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    O. Hohm and H. Samtleben, Consistent Kaluza-Klein truncations via exceptional field theory, JHEP01 (2015) 131 [arXiv:1410.8145] [INSPIRE].
  24. [24]
    F. Catino, G. Dall’Agata, G. Inverso and F. Zwirner, On the moduli space of spontaneously broken N = 8 supergravity, JHEP09 (2013) 040 [arXiv:1307.4389] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev.D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].
  26. [26]
    A. Baguet, C.N. Pope and H. Samtleben, Consistent Pauli reduction on group manifolds, Phys. Lett.B 752 (2016) 278 [arXiv:1510.08926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    E. Malek and H. Samtleben, Ten-dimensional origin of Minkowski vacua in N = 8 supergravity, Phys. Lett.B 776 (2018) 64 [arXiv:1710.02163] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP09 (2003) 054 [hep-th/0210209] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP01 (2004) 024 [hep-th/0208174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Flournoy, B. Wecht and B. Williams, Constructing nongeometric vacua in string theory, Nucl. Phys.B 706 (2005) 127 [hep-th/0404217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP10 (2005) 065 [hep-th/0406102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP05 (2006) 009 [hep-th/0512005] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E. Cremmer, J. Scherk and J.H. Schwarz, Spontaneously broken N = 8 supergravity, Phys. Lett.B 84 (1979) 83.ADSCrossRefGoogle Scholar
  34. [34]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys.B 655 (2003) 93 [hep-th/0212239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP06 (2007) 049 [arXiv:0705.2101] [INSPIRE].
  36. [36]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett.109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].
  37. [37]
    G. Dall’Agata, G. Inverso and A. Marrani, Symplectic deformations of gauged maximal supergravity, JHEP07 (2014) 133 [arXiv:1405.2437] [INSPIRE].
  38. [38]
    G. Dall’Agata and G. Inverso, On the vacua of N = 8 gauged supergravity in 4 dimensions, Nucl. Phys.B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].
  39. [39]
    A. Borghese, A. Guarino and D. Roest, All G 2invariant critical points of maximal supergravity, JHEP12 (2012) 108 [arXiv:1209.3003] [INSPIRE].
  40. [40]
    A. Borghese et al., The SU(3)-invariant sector of new maximal supergravity, JHEP03 (2013) 082 [arXiv:1211.5335] [INSPIRE].
  41. [41]
    A. Borghese, A. Guarino and D. Roest, Triality, periodicity and stability of SO(8) gauged supergravity, JHEP05 (2013) 107 [arXiv:1302.6057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Gallerati, H. Samtleben and M. Trigiante, The \( \mathcal{N} \) > 2 supersymmetric AdS vacua in maximal supergravity, JHEP12 (2014) 174 [arXiv:1410.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C.M. Hull, New gauged N = 8, D = 4 supergravities, Class. Quant. Grav.20 (2003) 5407 [hep-th/0204156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    C.M. Hull, More gaugings of N = 8 supergravity, Phys. Lett.148B (1984) 297 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    C.M. Hull, A new gauging of N = 8 supergravity, Phys. Rev.D 30 (1984) 760 [INSPIRE].
  46. [46]
    T. Fischbacher, H. Nicolai and H. Samtleben, Nonsemisimple and complex gaugings of N =16 supergravity, Commun. Math. Phys.249 (2004) 475 [hep-th/0306276] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G. Inverso, Generalised Scherk-Schwarz reductions from gauged supergravity, JHEP12 (2017) 124 [arXiv:1708.02589] [INSPIRE].
  48. [48]
    A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP06 (2015) 088 [arXiv:1504.01523] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E.T. Musaev, Exceptional field theory: SL(5), JHEP02 (2016) 012 [arXiv:1512.02163] [INSPIRE].
  50. [50]
    D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)ℝ+exceptional field theory, Class. Quant. Grav.33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    G. Bossard et al., Generalized diffeomorphisms for E 9, Phys. Rev.D 96 (2017) 106022 [arXiv:1708.08936] [INSPIRE].
  52. [52]
    G. Bossard et al., E 9exceptional field theory. Part I. The potential, JHEP03 (2019) 089 [arXiv:1811.04088] [INSPIRE].
  53. [53]
    C. Strickland-Constable, Subsectors, Dynkin diagrams and new generalised geometries, JHEP08 (2017) 144 [arXiv:1310.4196] [INSPIRE].
  54. [54]
    F. Ciceri et al., Double field theory at SL(2) angles, JHEP05 (2017) 028 [arXiv:1612.05230] [INSPIRE].
  55. [55]
    O. Hohm, E.T. Musaev and H. Samtleben, O(d + 1, d + 1) enhanced double field theory, JHEP10 (2017) 086 [arXiv:1707.06693] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    M. Cederwall and J. Palmkvist, Extended geometries, JHEP02 (2018) 071 [arXiv:1711.07694] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    O. Hohm and H. Samtleben, Gauge theory of Kaluza-Klein and winding modes, Phys. Rev.D 88 (2013) 085005 [arXiv:1307.0039] [INSPIRE].
  58. [58]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP11 (2011) 091 [arXiv:1107.1733] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP06 (2011) 096 [arXiv:1103.2136] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP08 (2016) 154 [arXiv:1604.08602] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    D. Cassani et al., Exceptional generalised geometry for massive IIA and consistent reductions, JHEP08 (2016) 074 [arXiv:1605.00563] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    D. Geissbuhler, Double field theory and N = 4 gauged supergravity, JHEP11 (2011) 116 [arXiv:1109.4280] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    P. du Bosque, F. Hassler and D. Lüst, Generalized parallelizable spaces from exceptional field theory, JHEP01 (2018) 117 [arXiv:1705.09304] [INSPIRE].
  64. [64]
    H. Samtleben, Lectures on gauged supergravity and flux compactifications, Class. Quant. Grav.25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    C. Condeescu, I. Florakis, C. Kounnas and D. Lüst, Gauged supergravities and non-geometric Q/R-fluxes from asymmetric orbifold CFT’s, JHEP10 (2013) 057 [arXiv:1307.0999] [INSPIRE].
  66. [66]
    H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E 7(7)Exceptional Field Theory, JHEP09 (2014) 044 [arXiv:1406.3235] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP03 (2012) 080 [arXiv:1111.7293] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev.D 85 (2012) 081501 [Erratum ibid.D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].
  69. [69]
    G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and generalized geometry, JHEP11 (2010) 083 [arXiv:1007.5509] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    D. Lüst, E. Malek and M. Syvari, Locally non-geometric fluxes and missing momenta in M-theory, JHEP01 (2018) 050 [arXiv:1710.05919] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Galileo Galilei”Università di PadovaPadovaItaly
  2. 2.INFN — Sezione di PadovaPadovaItaly
  3. 3.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary, University of LondonLondonU.K.
  4. 4.SISSA — Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  5. 5.INFN — Sezione di TriesteTriesteItaly

Personalised recommendations