Advertisement

Jet substructure measurements of interference in non-interfering SMEFT effects

  • Rafael AoudeEmail author
  • William Shepherd
Open Access
Regular Article - Theoretical Physics

Abstract

The tails of diboson production at the LHC are sensitive to the interference between Standard Model and higher dimension operators parameterizing the effects of heavy new physics. However, helicity selection rules for the diboson scattering amplitudes set an obstruction to the na¨ıve interference contributions of dimension six operators, causing the total diboson rate correction’s leading contribution to cancel. In this case, carefully measuring the azimuthal decay angles “resurrects” the interference, recouping sensitivity to the “non-interfering” operators. We explore these signatures in detail, and find that the EFT uncertainties associated with higher-dimensional operators are uniquely well-suppressed by the construction of an asymmetry variable which is only generated by these non-interfering operators, relegating the effects of higher-dimensional, interfering operators to the same status as statistical errors in this observable. We perform a complete analysis of this azimuthal interference pattern in hadronic decays of W bosons using jet substructure techniques to tag the bosons and measure their azimuthal decay angles. This technique provides a valuable cross-check to purely-leptonic measurements of interference resurrection in diboson production.

Keywords

Jets 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  3. [3]
    J. de Blas, O. Eberhardt and C. Krause, Current and future constraints on Higgs couplings in the nonlinear effective theory, JHEP07 (2018) 048 [arXiv:1803.00939] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    I. Brivio and M. Trott, The Standard Model as an effective field theory, Phys. Rept.793 (2019) 1 [arXiv:1706.08945] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE].
  6. [6]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev.D 48 (1993) 2182 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the Standard Model, Nucl. Phys.B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G.J. Gounaris, J. Layssac and F.M. Renard, Testing the Higgs boson gluonic couplings at CERN LHC, Phys. Rev.D 58 (1998) 075006 [hep-ph/9803422] [INSPIRE].
  9. [9]
    A.V. Manohar and M.B. Wise, Modifications to the properties of the Higgs boson, Phys. Lett.B 636 (2006) 107 [hep-ph/0601212] [INSPIRE].
  10. [10]
    A.V. Manohar and M.B. Wise, Flavor changing neutral currents, an extended scalar sector and the Higgs production rate at the CERN LHC, Phys. Rev.D 74 (2006) 035009 [hep-ph/0606172] [INSPIRE].
  11. [11]
    V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev.D 67 (2003) 115001 [hep-ph/0301097] [INSPIRE].
  12. [12]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  13. [13]
    B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev.D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].
  14. [14]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ±data in a global fit of SMEFT parameters to lift flat directions, JHEP09 (2016) 157 [arXiv:1606.06693] [INSPIRE].
  16. [16]
    L. Berthier and M. Trott, Consistent constraints on the Standard Model effective field theory, JHEP02 (2016) 069 [arXiv:1508.05060] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Ellis, V. Sanz and T. You, Complete Higgs sector constraints on dimension-6 operators, JHEP07 (2014) 036 [arXiv:1404.3667] [INSPIRE].
  18. [18]
    R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections to h\( b\overline{b} \)and h\( \tau \overline{\tau} \)decays in the Standard Model dimension-6 EFT: four-fermion operators and the large-m tlimit, JHEP05 (2016) 080 [arXiv:1512.02508] [INSPIRE].
  19. [19]
    R. Gauld, B.D. Pecjak and D.J. Scott, QCD radiative corrections for h\( b\overline{b} \)in the Standard Model dimension-6 EFT, Phys. Rev.D 94 (2016) 074045 [arXiv:1607.06354] [INSPIRE].
  20. [20]
    C. Hartmann and M. Trott, Higgs decay to two photons at one loop in the Standard Model effective field theory, Phys. Rev. Lett.115 (2015) 191801 [arXiv:1507.03568] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The gauge-Higgs legacy of the LHC run I, JHEP07 (2016) 152 [arXiv:1604.03105] [INSPIRE].
  22. [22]
    A. Biekötter, T. Corbett and T. Plehn, The gauge-Higgs legacy of the LHC run II, SciPost Phys.6 (2019) 064 [arXiv:1812.07587] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O.J.P. É boli and M.C. Gonzalez-Garcia, Electroweak sector under scrutiny: a combined analysis of LHC and electroweak precision data, Phys. Rev.D 99 (2019) 033001 [arXiv:1812.01009] [INSPIRE].
  24. [24]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and λ dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
  25. [25]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Hartmann, W. Shepherd and M. Trott, The Z decay width in the SMEFT: y tand λ corrections at one loop, JHEP03 (2017) 060 [arXiv:1611.09879] [INSPIRE].
  28. [28]
    C. Hartmann and M. Trott, On one-loop corrections in the Standard Model effective field theory; the Γ(hγ γ) case, JHEP07 (2015) 151 [arXiv:1505.02646] [INSPIRE].
  29. [29]
    S. Dawson and P.P. Giardino, Higgs decays to ZZ and Zγ in the Standard Model effective field theory: an NLO analysis, Phys. Rev.D 97 (2018) 093003 [arXiv:1801.01136] [INSPIRE].
  30. [30]
    S. Dawson and A. Ismail, Standard Model EFT corrections to Z boson decays, Phys. Rev.D 98 (2018) 093003 [arXiv:1808.05948] [INSPIRE].
  31. [31]
    C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD, Phys. Rev.D 88 (2013) 054005 [arXiv:1305.7386] [INSPIRE].
  32. [32]
    S. Dawson and P.P. Giardino, Electroweak corrections to Higgs boson decays to γγ and W +W in Standard Model EFT, Phys. Rev.D 98 (2018) 095005 [arXiv:1807.11504] [INSPIRE].
  33. [33]
    A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, The decay hγγ in the Standard-Model effective field theory, JHEP08 (2018) 103 [arXiv:1805.00302] [INSPIRE].
  34. [34]
    E. Vryonidou and C. Zhang, Dimension-six electroweak top-loop effects in Higgs production and decay, JHEP08 (2018) 036 [arXiv:1804.09766] [INSPIRE].
  35. [35]
    F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model effective field theory at NLO in QCD, JHEP10 (2016) 123 [arXiv:1607.05330] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    C. Zhang, Single top production at next-to-leading order in the Standard Model effective field theory, Phys. Rev. Lett.116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Dawson, P.P. Giardino and A. Ismail, Standard Model EFT and the Drell-Yan process at high energy, Phys. Rev.D 99 (2019) 035044 [arXiv:1811.12260] [INSPIRE].
  38. [38]
    J. Baglio, S. Dawson and I.M. Lewis, An NLO QCD effective field theory analysis of W +W production at the LHC including fermionic operators, Phys. Rev.D 96 (2017) 073003 [arXiv:1708.03332] [INSPIRE].
  39. [39]
    J. Baglio, S. Dawson and I.M. Lewis, NLO effects in EFT fits to W +W production at the LHC, Phys. Rev.D 99 (2019) 035029 [arXiv:1812.00214] [INSPIRE].
  40. [40]
    CMS collaboration, Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at \( \sqrt{s}=8 \)TeV, Phys. Lett.B 746 (2015) 79 [arXiv:1411.2646] [INSPIRE].
  41. [41]
    CMS collaboration, Search for quark compositeness in dijet angular distributions from pp collisions at \( \sqrt{s}=7 \)TeV, JHEP05 (2012) 055 [arXiv:1202.5535] [INSPIRE].
  42. [42]
    S. Alte, M. König and W. Shepherd, Consistent searches for SMEFT effects in non-resonant dijet events, JHEP01 (2018) 094 [arXiv:1711.07484] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Alte, M. König and W. Shepherd, Consistent searches for SMEFT effects in non-resonant dilepton events, arXiv:1812.07575 [INSPIRE].
  44. [44]
    A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev.D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].
  45. [45]
    A. Azatov, J. Elias-Miro, Y. Reyimuaji and E. Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, JHEP10 (2017) 027 [arXiv:1707.08060] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Panico, F. Riva and A. Wulzer, Diboson interference resurrection, Phys. Lett.B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L.J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at hadron colliders, Nucl. Phys.B 423 (1994) 3 [Erratum ibid.B 452 (1995) 724] [hep-ph/9312363] [INSPIRE].
  48. [48]
    A. Abdesselam et al., Boosted objects: a probe of beyond the Standard Model physics, Eur. Phys. J.C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].
  49. [49]
    A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys.G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].
  50. [50]
    A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23-27 July 2012, Eur. Phys. J.C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].
  51. [51]
    K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev.D 48 (1993) 2182 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Azatov, D. Barducci and E. Venturini, Precision diboson measurements at hadron colliders, JHEP04 (2019) 075 [arXiv:1901.04821] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    E. Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, talk at Planck 2018, (2018).
  54. [54]
    B. Gripaios and D. Sutherland, Searches for CP-violating dimension-6 electroweak gauge boson operators, Phys. Rev.D 89 (2014) 076004 [arXiv:1309.7822] [INSPIRE].
  55. [55]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett.100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev.D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].
  57. [57]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett.101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett.104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
  60. [60]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  63. [63]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  65. [65]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  66. [66]
    M. Cacciari and G.P. Salam, Dispelling the N 3myth for the k tjet-finder, Phys. Lett.B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].
  67. [67]
    ATLAS collaboration, Search for diboson resonances with boson-tagged jets in pp collisions at \( \sqrt{s}=13 \)TeV with the ATLAS detector, Phys. Lett.B 777 (2018) 91 [arXiv:1708.04445] [INSPIRE].
  68. [68]
    ALEPH, DELPHI, L3, OPAL and LEP Electroweak collaborations, Electroweak measurements in electron-positron collisions at W -boson-pair energies at LEP, Phys. Rept.532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
  69. [69]
    V. Hirschi, F. Maltoni, I. Tsinikos and E. Vryonidou, Constraining anomalous gluon self-interactions at the LHC: a reappraisal, JHEP07 (2018) 093 [arXiv:1806.04696] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous triple gauge couplings in the effective field theory approach at the LHC, JHEP02 (2017) 115 [arXiv:1609.06312] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.PRISMA Cluster of Excellence & Mainz Institute of Theoretical PhysicsJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Physics DepartmentSam Houston State UniversityHuntsvilleU.S.A.

Personalised recommendations