Advertisement

Supersymmetric indices of 3d S-fold SCFTs

  • Ivan Garozzo
  • Gabriele Lo Monaco
  • Noppadol MekareeyaEmail author
  • Matteo Sacchi
Open Access
Regular Article - Theoretical Physics

Abstract

Enhancement of global symmetry and supersymmetry in the infrared is one of the most intriguing phenomena in quantum field theory. We investigate such phenomena in a large class of three dimensional superconformal field theories, known as the S-fold SCFTs. Supersymmetric indices are computed for a number of theories containing small rank gauge groups. It is found that indices of several models exhibit enhancement of supersymmetry at the superconformal fixed point in the infrared. Dualities between S-fold theories that have different quiver descriptions are also analysed. We explore a new class of theories with a discrete global symmetry, whose gauge symmetry in the quiver has a different global structure from those that have been studied earlier.

Keywords

Conformal Field Models in String Theory Supersymmetry and Duality Brane Dynamics in Gauge Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys.13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
  2. [2]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys.B 492 (1997) 152 [hep-th/9611230] [INSPIRE].
  3. [3]
    D.R. Gulotta, C.P. Herzog and S.S. Pufu, From necklace quivers to the F-theorem, operator counting and T (U(N )), JHEP12 (2011) 077 [arXiv:1105.2817] [INSPIRE].
  4. [4]
    B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP06 (2018) 019 [arXiv:1804.06419] [INSPIRE].
  5. [5]
    I. García-Etxebarria and D. Regalado, N = 3 four dimensional field theories, JHEP03 (2016) 083 [arXiv:1512.06434] [INSPIRE].
  6. [6]
    O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP06 (2016) 044 [arXiv:1602.08638] [INSPIRE].
  7. [7]
    C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS 3/CFT 2, JHEP08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
  8. [8]
    C. Couzens, D. Martelli and S. Schäfer-Nameki, F-theory and AdS 3/CFT 2 (2, 0), JHEP06 (2018) 008 [arXiv:1712.07631] [INSPIRE].
  9. [9]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
  10. [10]
    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP06 (2007) 022 [arXiv:0705.0024] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev.D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].
  12. [12]
    L. Martucci, Topological duality twist and brane instantons in F-theory, JHEP06 (2014) 180 [arXiv:1403.2530] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Gadde, S. Gukov and P. Putrov, Duality defects, arXiv:1404.2929 [INSPIRE].
  14. [14]
    B. Assel and S. Schäfer-Nameki, Six-dimensional origin of N = 4 SYM with duality defects, JHEP12 (2016) 058 [arXiv:1610.03663] [INSPIRE].
  15. [15]
    C. Lawrie, D. Martelli and S. Schäfer-Nameki, Theories of class F and anomalies, JHEP10 (2018) 090 [arXiv:1806.06066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    O.J. Ganor, N.P. Moore, H.-Y. Sun and N.R. Torres-Chicon, Janus configurations with SL(2, Z)-duality twists, strings on mapping tori and a tridiagonal determinant formula, JHEP07 (2014) 010 [arXiv:1403.2365] [INSPIRE].
  17. [17]
    I. Garozzo, G. Lo Monaco and N. Mekareeya, The moduli spaces of S-fold CFTs, JHEP01 (2019) 046 [arXiv:1810.12323] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    I. Garozzo, G. Lo Monaco and N. Mekareeya, Variations on S-fold CFTs, JHEP03 (2019) 171 [arXiv:1901.10493] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    Y. Terashima and M. Yamazaki, SL(2, R) Chern-Simons, Liouville and gauge theory on duality walls, JHEP08 (2011) 135 [arXiv:1103.5748] [INSPIRE].
  20. [20]
    D. Gang, N. Kim, M. Romo and M. Yamazaki, Aspects of defects in 3d-3d correspondence, JHEP10 (2016) 062 [arXiv:1510.05011] [INSPIRE].
  21. [21]
    D. Gang and K. Yonekura, Symmetry enhancement and closing of knots in 3d/3d correspondence, JHEP07 (2018) 145 [arXiv:1803.04009] [INSPIRE].
  22. [22]
    D. Gang and M. Yamazaki, Three-dimensional gauge theories with supersymmetry enhancement, Phys. Rev.D 98 (2018) 121701 [arXiv:1806.07714] [INSPIRE].
  23. [23]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for superconformal field theories in 3, 5 and 6 dimensions, JHEP02 (2008) 064 [arXiv:0801.1435] [INSPIRE].
  24. [24]
    J. Bhattacharya and S. Minwalla, Superconformal indices for N = 6 Chern Simons theories, JHEP01 (2009) 014 [arXiv:0806.3251] [INSPIRE].
  25. [25]
    S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys.B 821 (2009) 241 [Erratum ibid.B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  26. [26]
    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP04 (2011) 007 [arXiv:1101.0557] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Kapustin and B. Willett, Generalized superconformal index for three dimensional field theories, arXiv:1106.2484 [INSPIRE].
  28. [28]
    T. Dimofte, D. Gaiotto and S. Gukov, 3-manifolds and 3d indices, Adv. Theor. Math. Phys.17 (2013) 975 [arXiv:1112.5179] [INSPIRE].
  29. [29]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP07 (2013) 149 [arXiv:1305.3924] [INSPIRE].
  30. [30]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for orthogonal groups, JHEP08 (2013) 099 [arXiv:1307.0511] [INSPIRE].
  31. [31]
    K. Maruyoshi and J. Song, Enhancement of supersymmetry via renormalization group flow and the superconformal index, Phys. Rev. Lett.118 (2017) 151602 [arXiv:1606.05632] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Maruyoshi and J. Song, N = 1 deformations and RG flows of N = 2 SCFTs, JHEP02 (2017) 075 [arXiv:1607.04281] [INSPIRE].
  33. [33]
    P. Agarwal, K. Maruyoshi and J. Song, N = 1 deformations and RG flows of N = 2 SCFTs, part II: non-principal deformations, JHEP12 (2016) 103 [Addendum ibid.04 (2017) 113] [arXiv:1610.05311] [INSPIRE].
  34. [34]
    S. Benvenuti and S. Giacomelli, Supersymmetric gauge theories with decoupled operators and chiral ring stability, Phys. Rev. Lett.119 (2017) 251601 [arXiv:1706.02225] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1 dimensions, JHEP10 (2017) 173 [arXiv:1706.04949] [INSPIRE].
  36. [36]
    P. Agarwal, A. Sciarappa and J. Song, N = 1 Lagrangians for generalized Argyres-Douglas theories, JHEP10 (2017) 211 [arXiv:1707.04751] [INSPIRE].
  37. [37]
    S. Benvenuti and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP10 (2017) 106 [arXiv:1707.05113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    P. Agarwal, K. Maruyoshi and J. Song, ALagrangianfor the E 7superconformal theory, JHEP05 (2018) 193 [arXiv:1802.05268] [INSPIRE].
  39. [39]
    D. Gaiotto, Z. Komargodski and J. Wu, Curious aspects of three-dimensional N = 1 SCFTs, JHEP08 (2018) 004 [arXiv:1804.02018] [INSPIRE].
  40. [40]
    F. Benini and S. Benvenuti, N = 1 QED in 2 + 1 dimensions: dualities and enhanced symmetries, arXiv:1804.05707 [INSPIRE].
  41. [41]
    V. Bashmakov, F. Benini, S. Benvenuti and M. Bertolini, Living on the walls of super-QCD, SciPost Phys.6 (2019) 044 [arXiv:1812.04645] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Giacomelli, Infrared enhancement of supersymmetry in four dimensions, JHEP10 (2018) 041 [arXiv:1808.00592] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    F. Carta, S. Giacomelli and R. Savelli, SUSY enhancement from T-branes, JHEP12 (2018) 127 [arXiv:1809.04906] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Fazzi, A. Lanir, S.S. Razamat and O. Sela, Chiral 3d SU(3) SQCD and N = 2 mirror duality, JHEP11 (2018) 025 [arXiv:1808.04173] [INSPIRE].
  45. [45]
    F. Apruzzi, F. Hassler, J.J. Heckman and T.B. Rochais, Nilpotent networks and 4D RG flows, JHEP05 (2019) 074 [arXiv:1808.10439] [INSPIRE].
  46. [46]
    P. Agarwal, On dimensional reduction of 4d N = 1 Lagrangians for Argyres-Douglas theories, JHEP03 (2019) 011 [arXiv:1809.10534] [INSPIRE].
  47. [47]
    F. Aprile, S. Pasquetti and Y. Zenkevich, Flipping the head of T[SU(N)]: mirror symmetry, spectral duality and monopoles, JHEP04 (2019) 138 [arXiv:1812.08142] [INSPIRE].
  48. [48]
    T. Okazaki, Mirror symmetry of 3d N = 4 gauge theories and supersymmetric indices, arXiv:1905.04608 [INSPIRE].
  49. [49]
    S.S. Razamat and G. Zafrir, Exceptionally simple exceptional models, JHEP11 (2016) 061 [arXiv:1609.02089] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  50. [50]
    A. Gadde, E. Pomoni and L. Rastelli, The Veneziano limit of N = 2 superconformal QCD: towards the string dual of N = 2 SU(N c) SYM with N f = 2N c, arXiv:0912.4918 [INSPIRE].
  51. [51]
    C. Beem and A. Gadde, The N = 1 superconformal index for class S fixed points, JHEP04 (2014) 036 [arXiv:1212.1467] [INSPIRE].
  52. [52]
    M. Evtikhiev, Studying superconformal symmetry enhancement through indices, JHEP04 (2018) 120 [arXiv:1708.08307] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    B. Assel, Hanany-Witten effect and SL(2, Z) dualities in matrix models, JHEP10 (2014) 117 [arXiv:1406.5194] [INSPIRE].
  54. [54]
    F.A. Dolan, On superconformal characters and partition functions in three dimensions, J. Math. Phys.51 (2010) 022301 [arXiv:0811.2740] [INSPIRE].
  55. [55]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, JHEP03 (2019) 163 [arXiv:1612.00809] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    T. Dimofte and D. Gaiotto, An E 7Surprise, JHEP10 (2012) 129 [arXiv:1209.1404] [INSPIRE].
  57. [57]
    S.S. Razamat and B. Willett, Down the rabbit hole with theories of class S, JHEP10 (2014) 099 [arXiv:1403.6107] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    F. Benini, T. Nishioka and M. Yamazaki, 4d index to 3d index and 2d TQFT, Phys. Rev.D 86 (2012) 065015 [arXiv:1109.0283] [INSPIRE].
  59. [59]
    S.S. Razamat and B. Willett, Global properties of supersymmetric theories and the lens space, Commun. Math. Phys.334 (2015) 661 [arXiv:1307.4381] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    C. Bachas, I. Lavdas and B. Le Floch, Marginal deformations of 3d N = 4 linear quiver theories, arXiv:1905.06297 [INSPIRE].
  61. [61]
    B. Le Floch, S-duality wall of SQCD from Toda braiding, arXiv:1512.09128 [INSPIRE].
  62. [62]
    F. Benini, S. Benvenuti and S. Pasquetti, SUSY monopole potentials in 2 + 1 dimensions, JHEP08 (2017) 086 [arXiv:1703.08460] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    S. Pasquetti and M. Sacchi, From 3d dualities to 2d free field correlators and back, arXiv:1903.10817 [INSPIRE].
  64. [64]
    S. Pasquetti and M. Sacchi, 3d dualities from 2d free field correlators: recombination and rank stabilization, arXiv:1905.05807 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Ivan Garozzo
    • 1
    • 2
  • Gabriele Lo Monaco
    • 1
    • 2
  • Noppadol Mekareeya
    • 2
    • 3
    Email author
  • Matteo Sacchi
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  2. 2.INFN, sezione di Milano-Bicocca,MilanoItaly
  3. 3.Department of Physics, Faculty of indexenceChulalongkorn UniversityBangkokThailand

Personalised recommendations