Advertisement

Quasinormal modes of magnetic black branes at finite ’t Hooft coupling

  • Sebastian WaeberEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

The aim of this work is to extend the knowledge about Quasinormal Modes (QNMs) and the equilibration of strongly coupled systems, specifically of a quark gluon plasma (which we consider to be in a strong magnetic background field) by using the duality between \( \mathcal{N} \) = 4 Super Yang-Mills (SYM) theory and type IIb Super Gravity (SUGRA) and including higher derivative corrections. The behaviour of the equilibrating system can be seen as the response of the system to tiny excitations. A quark gluon plasma in a strong magnetic background field, as produced for very short times during an actual heavy ion collision, is described holographically by certain metric solutions to 5D Einstein-Maxwell- (Chern-Simons) theory, which can be obtained from type IIb SUGRA. We are going to compute higher derivative corrections to this metric and consider α3 corrections to tensor- quasinormal modes in this background geometry. We find indications for a strong influence of the magnetic background field on the equilibration behaviour also and especially when we include higher derivative corrections.

Keywords

AdS-CFT Correspondence Holography and quark-gluon plasmas Black Holes in String Theory Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP10 (2009) 088 [arXiv:0908.3875] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Janiszewski and M. Kaminski, Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev.D 93 (2016) 025006 [arXiv:1508.06993] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    M. Ammon, M. Kaminski, R. Koirala, J. Leiber and J. Wu, Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP04 (2017) 067 [arXiv:1701.05565] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D.J. Gross and E. Witten, Superstring modifications of Einstein’s equations, Nucl. Phys.B 277 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP10 (2008) 047 [arXiv:0804.0763] [INSPIRE].
  6. [6]
    R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev.D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Buchel and M. Paulos, Relaxation time of a CFT plasma at finite coupling, Nucl. Phys.B 805 (2008) 59 [arXiv:0806.0788] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    S. de Haro, A. Sinkovics and K. Skenderis, On a supersymmetric completion of the R 4term in IIB supergravity, Phys. Rev.D 67 (2003) 084010 [hep-th/0210080] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. de Haro, A. Sinkovics and K. Skenderis, On α′ corrections to D-brane solutions, Phys. Rev.D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].ADSGoogle Scholar
  10. [10]
    K. Peeters and A. Westerberg, The Ramond-Ramond sector of string theory beyond leading order, Class. Quant. Grav.21 (2004) 1643 [hep-th/0307298] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Pawelczyk and S. Theisen, AdS 5× S 5black hole metric at O(α′ 3), JHEP09 (1998) 010 [hep-th/9808126] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP01 (2006) 103 [hep-th/0510041] [INSPIRE].
  13. [13]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys.B 707 (2005) 56 [hep-th/0406264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling, Nucl. Phys.B 803 (2008) 166 [arXiv:0805.2683] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Buchel, Sensitivity of holographic N = 4 SYM plasma hydrodynamics to finite coupling corrections, Phys. Rev.D 98 (2018) 061901 [arXiv:1807.05457] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys.B 534 (1998) 202 [hep-th/9805156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S.A. Stricker, Holographic thermalization in N = 4 super Yang-Mills theory at finite coupling, Eur. Phys. J.C 74 (2014) 2727 [arXiv:1307.2736] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Waeber and A. Schäfer, Studying a charged quark gluon plasma via holography and higher derivative corrections, JHEP07 (2018) 069 [arXiv:1804.01912] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Waeber, A. Schäfer, A. Vuorinen and L.G. Yaffe, Finite coupling corrections to holographic predictions for hot QCD, JHEP11 (2015) 087 [arXiv:1509.02983] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev.D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev.D 66 (2002) 124013 [hep-th/0207133] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    A. Núñez and A.O. Starinets, AdS/CFT correspondence, quasinormal modes and thermal correlators in N = 4 SYM, Phys. Rev.D 67 (2003) 124013 [hep-th/0302026] [INSPIRE].ADSGoogle Scholar
  23. [23]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav.26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    G. Endrodi, M. Kaminski, A. Schäfer, J. Wu and L. Yaffe, Universal magnetoresponse in QCD and N = 4 SYM, JHEP09 (2018) 070 [arXiv:1806.09632] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J.F. Fuini and L.G. Yaffe, Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field, JHEP07 (2015) 116 [arXiv:1503.07148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev.D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    J.P. Boyd, Chebyshev and Fourier spectral methods (revised), http://depts.washington.edu/ph506/Boyd.pdf, (2001).

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of RegensburgRegensburgGermany

Personalised recommendations