Asymmetric shockwave collisions in AdS5

  • Sebastian WaeberEmail author
  • Andreas Rabenstein
  • Andreas Schäfer
  • Laurence G. Yaffe
Open Access
Regular Article - Theoretical Physics


Collisions of asymmetric planar shocks in maximally supersymmetric Yang-Mills theory are studied via their dual gravitational formulation in asymptotically anti-de Sitter spacetime. The post-collision hydrodynamic flow is found to be very well described by appropriate means of the results of symmetric shock collisions. This study extends, to asymmetric collisions, previous work of Chesler, Kilbertus, and van der Schee examining the special case of symmetric collisions [1]. Given the universal description of hydrodynamic flow produced by asymmetric planar collisions one can model, quantitatively, non-planar, non-central collisions of highly Lorentz contracted projectiles without the need for computing, holographically, collisions of finite size projectiles with very large aspect ratios. This paper also contains a pedagogical description of the computational methods and software used to compute shockwave collisions using pseudo-spectral methods, supplementing the earlier overview of Chesler and Yaffe [2].


AdS-CFT Correspondence Holography and quark-gluon plasmas Quark-Gluon Plasma Gauge-gravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    P.M. Chesler, N. Kilbertus and W. van der Schee, Universal hydrodynamic flow in holographic planar shock collisions, JHEP11 (2015) 135 [arXiv:1507.02548] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically Anti-de Sitter spacetimes, JHEP07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5spacetime, Phys. Rev. Lett.106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-Abelian plasmas simplified, Phys. Rev. Lett.108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M.P. Heller, R.A. Janik and P. Witaszczyk, A numerical relativity approach to the initial value problem in asymptotically Anti-de Sitter spacetime for plasma thermalization — An ADM formulation, Phys. Rev.D85 (2012) 126002 [arXiv:1203.0755] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett.111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Buchel, M.P. Heller and R.C. Myers, Equilibration rates in a strongly coupled nonconformal quark-gluon plasma, Phys. Rev. Lett.114 (2015) 251601 [arXiv:1503.07114] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP10 (2015) 070 [arXiv:1501.04644] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W. van der Schee, P. Romatschke and S. Pratt, Fully dynamical simulation of central nuclear collisions, Phys. Rev. Lett.111 (2013) 222302 [arXiv:1307.2539] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    W. van der Schee and B. Schenke, Rapidity dependence in holographic heavy ion collisions, Phys. Rev.C 92 (2015) 064907 [arXiv:1507.08195] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Casalderrey-Solana, D. Mateos, W. van der Schee and M. Triana, Holographic heavy ion collisions with baryon charge, JHEP09 (2016) 108 [arXiv:1607.05273] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Ecker et al., Exploring nonlocal observables in shock wave collisions, JHEP11 (2016) 054 [arXiv:1609.03676] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    P.M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett.115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Attems et al., Holographic collisions in non-conformal theories, JHEP01 (2017) 026 [arXiv:1604.06439] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P.M. Chesler, How big are the smallest drops of quark-gluon plasma?, JHEP03 (2016) 146 [arXiv:1601.01583] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, Longitudinal coherence in a holographic model of asymmetric collisions, Phys. Rev. Lett.112 (2014) 221602 [arXiv:1312.2956] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.F. Fuini and L.G. Yaffe, Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field, JHEP07 (2015) 116 [arXiv:1503.07148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B707 (2005) 56 [hep-th/0406264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Waeber and A. Schäfer, Studying a charged quark gluon plasma via holography and higher derivative corrections, JHEP07 (2018) 069 [arXiv:1804.01912] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    H. Bondi, Gravitational waves in general relativity, Nature186 (1960) 535 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond.A 270 (1962) 103 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    J.P. Boyd, Chebyshev and Fourier spectral methods, revised ed., Dover Books on Mathematics, Dover, U.S.A. (2001).Google Scholar
  23. [23]
    P. Arnold, P. Romatschke and W. van der Schee, Absence of a local rest frame in far from equilibrium quantum matter, JHEP10 (2014) 110 [arXiv:1408.2518] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev.D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Sebastian Waeber
    • 1
    Email author
  • Andreas Rabenstein
    • 1
  • Andreas Schäfer
    • 1
  • Laurence G. Yaffe
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of RegensburgRegensburgGermany
  2. 2.Department of PhysicsUniversity of WashingtonSeattleU.S.A.

Personalised recommendations