Searching for BSM neutrino interactions in dark matter detectors

  • Jonathan M. Link
  • Xun-Jie XuEmail author
Open Access
Regular Article - Theoretical Physics


Neutrino interactions beyond the Standard Model (BSM) are theoretically well motivated and have an important impact on the future precision measurement of neutrino oscillation. In this work, we study the sensitivity of a multi-ton-scale liquid Xenon dark matter detector equipped with an intense radioactive neutrino source to various BSM neutrino-electron interactions. We consider the conventional Non-Standard Interactions (NSIs), other more generalized four-fermion interactions including scalar and tensor forms, and light-boson mediated interactions. The work shows that with realistic experimental setups, one can achieve unprecedented sensitivity to these BSM neutrino-electron interactions.


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP03 (2003) 011 [hep-ph/0302093] [INSPIRE].ADSGoogle Scholar
  2. [2]
    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys.76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].ADSGoogle Scholar
  3. [3]
    Y. Farzan and M. Tortola, Neutrino oscillations and non-standard interactions, Front. Phys.6 (2018) 10 [arXiv:1710.09360].Google Scholar
  4. [4]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and J. Salvado, Updated Constraints on Non-Standard Interactions from Global Analysis of Oscillation Data, JHEP08 (2018) 180 [arXiv:1805.04530] [INSPIRE].ADSGoogle Scholar
  5. [5]
    D.V. Forero and P. Huber, Hints for leptonic CP-violation or New Physics?, Phys. Rev. Lett.117 (2016) 031801 [arXiv:1601.03736] [INSPIRE].ADSGoogle Scholar
  6. [6]
    O.G. Miranda, M. Tortola and J.W.F. Valle, New ambiguity in probing CP-violation in neutrino oscillations, Phys. Rev. Lett.117 (2016) 061804 [arXiv:1604.05690] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Masud, A. Chatterjee and P. Mehta, Probing CP-violation signal at DUNE in presence of non-standard neutrino interactions, J. Phys.G 43 (2016) 095005 [arXiv:1510.08261] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Bakhti and Y. Farzan, CP-violation and non-standard interactions at the MOMENT, JHEP07 (2016) 109 [arXiv:1602.07099] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Masud and P. Mehta, Nonstandard interactions spoiling the CP-violation sensitivity at DUNE and other long baseline experiments, Phys. Rev.D 94 (2016) 013014 [arXiv:1603.01380] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. C and R. Mohanta, Impact of lepton flavor universality violation on CP-violation sensitivity of long-baseline neutrino oscillation experiments, Eur. Phys. J.C 77 (2017) 32 [arXiv:1701.00327] [INSPIRE].
  11. [11]
    J.M. Hyde, Biprobability approach to CP phase degeneracy from non-standard neutrino interactions, arXiv:1806.09221 [INSPIRE].
  12. [12]
    K.N. Deepthi, S. Goswami and N. Nath, Challenges posed by non-standard neutrino interactions in the determination of δ CPat DUNE, Nucl. Phys.B 936 (2018) 91 [arXiv:1711.04840] [INSPIRE].ADSzbMATHGoogle Scholar
  13. [13]
    W. Konetschny and W. Kummer, Nonconservation of total lepton number with scalar bosons, Phys. Lett.70B (1977) 433 [INSPIRE].ADSGoogle Scholar
  14. [14]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev.D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  15. [15]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys.B 181 (1981) 287 [INSPIRE].ADSGoogle Scholar
  16. [16]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev.D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev.D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev.D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  19. [19]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev.D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev.D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev.D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  22. [22]
    E.E. Jenkins, Searching for a (B l) gauge boson in p \( \overline{p} \)collisions, Phys. Lett.B 192 (1987) 219 [INSPIRE].ADSGoogle Scholar
  23. [23]
    X.G. He, G.C. Joshi, H. Lew and R.R. Volkas, NEW Z′ phenomenology, Phys. Rev.D 43 (1991) 22 [INSPIRE].ADSGoogle Scholar
  24. [24]
    W. Buchmüller, C. Greub and P. Minkowski, Neutrino masses, neutral vector bosons and the scale of B-L breaking, Phys. Lett.B 267 (1991) 395 [INSPIRE].ADSGoogle Scholar
  25. [25]
    X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z′ model, Phys. Rev.D 44 (1991) 2118 [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Foot, X.G. He, H. Lew and R.R. Volkas, Model for a light Zboson, Phys. Rev.D 50 (1994) 4571 [hep-ph/9401250] [INSPIRE].ADSGoogle Scholar
  27. [27]
    W. Emam and S. Khalil, Higgs and Zphenomenology in B-L extension of the standard model at LHC, Eur. Phys. J.C 52 (2007) 625 [arXiv:0704.1395] [INSPIRE].ADSGoogle Scholar
  28. [28]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard model: Zand neutrinos, Phys. Rev.D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].ADSGoogle Scholar
  29. [29]
    B. Sevda et al., Constraints on scalar-pseudoscalar and tensorial non-standard interaction and tensorial unparticle couplings from neutrino-electron scattering, Phys. Rev.D 95 (2017) 033008 [arXiv:1611.07259] [INSPIRE].ADSGoogle Scholar
  30. [30]
    TEXONO collaboration, Measurement of ν e-bar electron scattering cross-section with a CsI (Tl) scintillating crystal array at the Kuo-Sheng nuclear power reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].Google Scholar
  31. [31]
    D.V. Forero and M.M. Guzzo, Constraining nonstandard neutrino interactions with electrons, Phys. Rev.D 84 (2011) 013002 [INSPIRE].ADSGoogle Scholar
  32. [32]
    Y. Kaneta and T. Shimomura, On the possibility of a search for the L μ− L τgauge boson at Belle-II and neutrino beam experiments, PTEP2017 (2017) 053B04 [arXiv:1701.00156] [INSPIRE].Google Scholar
  33. [33]
    W. Rodejohann, X.-J. Xu and C.E. Yaguna, Distinguishing between Dirac and Majorana neutrinos in the presence of general interactions, JHEP05 (2017) 024 [arXiv:1702.05721] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Lindner, F.S. Queiroz, W. Rodejohann and X.-J. Xu, Neutrino-electron scattering: general constraints on Zand dark photon models, JHEP05 (2018) 098 [arXiv:1803.00060] [INSPIRE].ADSGoogle Scholar
  35. [35]
    I. Bischer and W. Rodejohann, General neutrino interactions at the DUNE near detector, Phys. Rev.D 99 (2019) 036006 [arXiv:1810.02220] [INSPIRE].ADSGoogle Scholar
  36. [36]
    C.A. Argüelles, M. Hostert and Y.-D. Tsai, Testing new physics explanations of MiniBooNE anomaly at neutrino scattering experiments, arXiv:1812.08768 [INSPIRE].
  37. [37]
    B. Sevda et al., Constraints on nonstandard intermediate boson exchange models from neutrino-electron scattering, Phys. Rev.D 96 (2017) 035017 [arXiv:1702.02353] [INSPIRE].ADSGoogle Scholar
  38. [38]
    K.A. Kouzakov and A.I. Studenikin, Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering, Phys. Rev.D 95 (2017) 055013 [Erratum ibid. D 96 (2017) 099904] [arXiv:1703.00401] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A.N. Khan and D.W. McKay, sin2(θ)w estimate and bounds on nonstandard interactions at source and detector in the solar neutrino low-energy regime, JHEP 07 (2017) 143 [arXiv:1704.06222] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A.N. Khan, Global analysis of the source and detector nonstandard interactions using the short baseline ν-e and ν -e scattering data, Phys. Rev.D 93 (2016) 093019 [arXiv:1605.09284] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A.N. Khan, sin2θ Westimate and neutrino electromagnetic properties from low-energy solar data, J. Phys.G 46 (2019) 035005 [arXiv:1709.02930] [INSPIRE].ADSGoogle Scholar
  42. [42]
    K.S. Babu, A. Friedland, P.A.N. Machado and I. Mocioiu, Flavor gauge models below the Fermi scale, JHEP12 (2017) 096 [arXiv:1705.01822] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M.D. Campos et al., Neutrino masses and absence of flavor changing interactions in the 2HDM from gauge principles, JHEP08 (2017) 092 [arXiv:1705.05388] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Bauer, P. Foldenauer and J. Jaeckel, Hunting all the hidden photons, JHEP07 (2018) 094 [arXiv:1803.05466] [INSPIRE].ADSGoogle Scholar
  45. [45]
    CHARM-II collaboration, Measurement of differential cross-sections for muon-neutrino electron scattering, Phys. Lett.B 302 (1993) 351 [INSPIRE].Google Scholar
  46. [46]
    CHARM-II collaboration, Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett.B 335 (1994) 246 [INSPIRE].ADSGoogle Scholar
  47. [47]
    LSND collaboration, Measurement of electron-neutrino-electron elastic scattering, Phys. Rev.D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].Google Scholar
  48. [48]
    M. Pospelov, Neutrino physics with dark matter experiments and the signature of new baryonic neutral currents, Phys. Rev.D 84 (2011) 085008 [arXiv:1103.3261] [INSPIRE].ADSGoogle Scholar
  49. [49]
    R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν signals in dark matter detectors, JCAP07 (2012) 026 [arXiv:1202.6073] [INSPIRE].ADSGoogle Scholar
  50. [50]
    M. Pospelov and J. Pradler, Elastic scattering signals of solar neutrinos with enhanced baryonic currents, Phys. Rev.D 85 (2012) 113016 [Erratum ibid. D 88 (2013) 039904] [arXiv:1203.0545] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Pospelov and J. Pradler, Dark matter or neutrino recoil? Interpretation of recent experimental results, Phys. Rev.D 89 (2014) 055012 [arXiv:1311.5764] [INSPIRE].ADSGoogle Scholar
  52. [52]
    P. Coloma, P. Huber and J.M. Link, Combining dark matter detectors and electron-capture sources to hunt for new physics in the neutrino sector, JHEP11 (2014) 042 [arXiv:1406.4914] [INSPIRE].ADSGoogle Scholar
  53. [53]
    D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103.
  54. [54]
    LZ collaboration, LUX-ZEPLIN (LZ) conceptual design report, arXiv:1509.02910.
  55. [55]
    B.J. Mount et al., LUX-ZEPLIN (LZ) technical design report, arXiv:1703.09144 [INSPIRE].
  56. [56]
    M. Cribier et al., Production of a 62-PBq Cr-51 low-energy neutrino source for GALLEX, Nucl. Instrum. Meth.A 378 (1996) 233 [INSPIRE].ADSGoogle Scholar
  57. [57]
    G. Arcadi, M. Lindner, J. Martins and F.S. Queiroz, New physics probes: atomic parity violation, polarized electron scattering and neutrino-nucleus coherent scattering, arXiv:1906.04755 [INSPIRE].
  58. [58]
    C. Giunti and C.W. Kim, Fundamentals of neutrino physics and astrophysics, Oxford University Press, Oxford U.K.. (2007).Google Scholar
  59. [59]
    L. Baudis et al., Neutrino physics with multi-ton scale liquid xenon detectors, JCAP01 (2014) 044 [arXiv:1309.7024] [INSPIRE].ADSGoogle Scholar
  60. [60]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  61. [61]
    J. Erler and M.J. Ramsey-Musolf, The weak mixing angle at low energies, Phys. Rev.D 72 (2005) 073003 [hep-ph/0409169] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J. Erler and S. Su, The weak neutral current, Prog. Part. Nucl. Phys.71 (2013) 119 [arXiv:1303.5522] [INSPIRE].ADSGoogle Scholar
  63. [63]
    K.J. Healey, A.A. Petrov and D. Zhuridov, Nonstandard neutrino interactions and transition magnetic moments, Phys. Rev.D 87 (2013) 117301 [Erratum ibid. D 89 (2014) 059904] [arXiv:1305.0584] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M. Lindner, W. Rodejohann and X.-J. Xu, Coherent neutrino-nucleus scattering and new neutrino interactions, JHEP03 (2017) 097 [arXiv:1612.04150] [INSPIRE].ADSGoogle Scholar
  65. [65]
    L. Heurtier and Y. Zhang, Supernova constraints on massive (pseudo) scalar coupling to neutrinos, JCAP02 (2017) 042 [arXiv:1609.05882] [INSPIRE].ADSGoogle Scholar
  66. [66]
    D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev.D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].ADSGoogle Scholar
  67. [67]
    G. Magill and R. Plestid, Probing new charged scalars with neutrino trident production, Phys. Rev.D 97 (2018) 055003 [arXiv:1710.08431] [INSPIRE].ADSGoogle Scholar
  68. [68]
    Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP05 (2018) 066 [arXiv:1802.05171] [INSPIRE].ADSGoogle Scholar
  69. [69]
    Y. Yang and J.P. Kneller, Neutrino flavor transformation in supernovae as a probe for nonstandard neutrino-scalar interactions, Phys. Rev.D 97 (2018) 103018 [arXiv:1803.04504] [INSPIRE].ADSGoogle Scholar
  70. [70]
    D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev.D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].ADSGoogle Scholar
  71. [71]
    V. Brdar, W. Rodejohann and X.-J. Xu, Producing a new Fermion in coherent elastic neutrino-nucleus scattering: from neutrino mass to dark matter, JHEP12 (2018) 024 [arXiv:1810.03626] [INSPIRE].ADSGoogle Scholar
  72. [72]
    A. Blaut and W. Sobków, Neutrino elastic scattering on polarized electrons as tool for probing neutrino nature, arXiv:1812.09828 [INSPIRE].
  73. [73]
    D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z′ extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev.D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].ADSGoogle Scholar
  74. [74]
    E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In) visible Z′ and dark matter, JHEP08 (2009) 014 [arXiv:0904.1745] [INSPIRE].ADSGoogle Scholar
  75. [75]
    M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light Zbosons at the Tevatron, Phys. Rev.D 83 (2011) 115013 [arXiv:1103.6035] [INSPIRE].ADSGoogle Scholar
  76. [76]
    H. An, X. Ji and L.-T. Wang, Light dark matter and Zdark force at colliders, JHEP07 (2012) 182 [arXiv:1202.2894] [INSPIRE].ADSGoogle Scholar
  77. [77]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Zand dark matter: LHC vs LUX constraints, JHEP03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSGoogle Scholar
  78. [78]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Zportal: direct, indirect and collider searches, JHEP04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSGoogle Scholar
  79. [79]
    J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z-mediated dark matter and the galactic center gamma ray excess, JHEP08 (2014) 131 [arXiv:1405.7691] [INSPIRE].ADSGoogle Scholar
  80. [80]
    O. Ducu, L. Heurtier and J. Maurer, LHC signatures of a Zmediator between dark matter and the SU(3) sector, JHEP03 (2016) 006 [arXiv:1509.05615] [INSPIRE].ADSGoogle Scholar
  81. [81]
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators, JHEP01 (2015) 037 [arXiv:1407.8257] [INSPIRE].ADSGoogle Scholar
  82. [82]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)Xmodels, JHEP10 (2015) 076 [arXiv:1506.06767] [INSPIRE].ADSGoogle Scholar
  83. [83]
    N. Okada and S. Okada, ZBLportal dark matter and LHC Run-2 results, Phys. Rev.D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE].ADSGoogle Scholar
  84. [84]
    S.-F. Ge and I.M. Shoemaker, Constraining photon portal dark matter with Texono and coherent data, JHEP11 (2018) 066 [arXiv:1710.10889] [INSPIRE].ADSGoogle Scholar
  85. [85]
    J. Heeck, M. Lindner, W. Rodejohann and S. Vogl, Non-standard neutrino interactions and neutral gauge bosons, SciPost Phys.6 (2019) 038 [arXiv:1812.04067] [INSPIRE].ADSGoogle Scholar
  86. [86]
    I. Bischer, W. Rodejohann and X.-J. Xu, Loop-induced neutrino non-standard interactions, JHEP10 (2018) 096 [arXiv:1807.08102] [INSPIRE].ADSGoogle Scholar
  87. [87]
    TEXONO collaboration, Constraints on non-standard neutrino interactions and unparticle physics with neutrino-electron scattering at the Kuo-Sheng nuclear power reactor, Phys. Rev.D 82 (2010) 033004 [arXiv:1006.1947] [INSPIRE].ADSGoogle Scholar
  88. [88]
    X.-J. Xu, Tensor and scalar interactions of neutrinos may lead to observable neutrino magnetic moments, Phys. Rev.D 99 (2019) 075003 [arXiv:1901.00482] [INSPIRE].ADSGoogle Scholar
  89. [89]
    S.P. Rosen, Analog of the Michel parameter for neutrino-electron scattering: a test for Majorana neutrinos, Phys. Rev. Lett.48 (1982) 842 [INSPIRE].ADSGoogle Scholar
  90. [90]
    S. Bilmis et al., Constraints on dark photon from neutrino-electron scattering experiments, Phys. Rev.D 92 (2015) 033009 [arXiv:1502.07763] [INSPIRE].ADSGoogle Scholar
  91. [91]
    B. Dutta, R. Mahapatra, L.E. Strigari and J.W. Walker, Sensitivity to Z-prime and nonstandard neutrino interactions from ultralow threshold neutrino-nucleus coherent scattering, Phys. Rev.D 93 (2016) 013015 [arXiv:1508.07981] [INSPIRE].ADSGoogle Scholar
  92. [92]
    J.B. Dent et al., Probing light mediators at ultralow threshold energies with coherent elastic neutrino-nucleus scattering, Phys. Rev.D 96 (2017) 095007 [arXiv:1612.06350] [INSPIRE].ADSGoogle Scholar
  93. [93]
    Y. Cui, M. Pospelov and J. Pradler, Signatures of dark radiation in neutrino and dark matter detectors, Phys. Rev.D 97 (2018) 103004 [arXiv:1711.04531] [INSPIRE].ADSGoogle Scholar
  94. [94]
    M. Abdullah et al., Coherent elastic neutrino nucleus scattering as a probe of a Zthrough kinetic and mass mixing effects, Phys. Rev.D 98 (2018) 015005 [arXiv:1803.01224] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Neutrino Physics, Physics DepartmentVirginia TechBlacksburgU.S.A.
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations