Dai-Freed anomalies in particle physics
- 73 Downloads
- 3 Citations
Abstract
Anomalies can be elegantly analyzed by means of the Dai-Freed theorem. In this framework it is natural to consider a refinement of traditional anomaly cancellation conditions, which sometimes leads to nontrivial extra constraints in the fermion spectrum. We analyze these more refined anomaly cancellation conditions in a variety of theories of physical interest, including the Standard Model and the SU(5) and Spin(10) GUTs, which we find to be anomaly free. Turning to discrete symmetries, we find that baryon triality has a ℤ9 anomaly that only cancels if the number of generations is a multiple of 3. Assuming the existence of certain anomaly-free ℤ4 symmetry we relate the fact that there are 16 fermions per generation of the Standard model — including right-handed neutrinos — to anomalies under time-reversal of boundary states in four-dimensional topological superconductors. A similar relation exists for the MSSM, only this time involving the number of gauginos and Higgsinos, and it is non-trivially, and remarkably, satisfied for the SU(3) × SU(2) × U(1) gauge group with two Higgs doublets. We relate the constraints we find to the well-known Ibañez-Ross ones, and discuss the dependence on UV data of the construction. Finally, we comment on the (non-)existence of K-theoretic θ angles in four dimensions.
Keywords
Anomalies in Field and String Theories Discrete Symmetries Gauge Symmetry Differential and Algebraic GeometryNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]G. ’t Hooft et al., Recent developments in gauge theories. Proceedings, Nato Advanced Study Institute, Cargese, France, August 26 - September 8, 1979, NATO Sci. Ser.B 59 (1980) 1.Google Scholar
- [2]E. Witten, An SU(2) anomaly, Phys. Lett.B 117 (1982) 324.ADSMathSciNetGoogle Scholar
- [3]A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic symmetry protected topological phases and cobordisms, JHEP12 (2015) 052 [arXiv:1406.7329] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [4]C.-T. Hsieh, G.Y. Cho and S. Ryu, Global anomalies on the surface of fermionic symmetry-protected topological phases in (3 + 1) dimensions, Phys. Rev.B 93 (2016) 075135 [arXiv:1503.01411] [INSPIRE].ADSGoogle Scholar
- [5]E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys.88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].ADSGoogle Scholar
- [6]D.S. Freed, Pions and generalized cohomology, J. Diff. Geom.80 (2008) 45 [hep-th/0607134] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [7]C.-T. Hsieh, Discrete gauge anomalies revisited, arXiv:1808.02881 [INSPIRE].
- [8]E. Witten, Global gravitational anomalies, Commun. Math. Phys.100 (1985) 197 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [9]L. Álvarez-Gaumé, S. Della Pietra and G.W. Moore, Anomalies and odd dimensions, Annals Phys.163 (1985) 288 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [10]A. Bilal, Lectures on anomalies, arXiv:0802.0634 [INSPIRE].
- [11]A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge U.K. (2000).zbMATHGoogle Scholar
- [12]D.S. Freed, Determinants, torsion and strings, Commun. Math. Phys.107 (1986) 483 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [13]I. García-Etxebarria et al., 8d gauge anomalies and the topological Green-Schwarz mechanism, JHEP11 (2017) 177 [arXiv:1710.04218] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [14]L. Álvarez-Gaumé and P.H. Ginsparg, The topological meaning of nonabelian anomalies, Nucl. Phys.B 243 (1984) 449 [INSPIRE].ADSMathSciNetGoogle Scholar
- [15]K. Yonekura, Dai-Freed theorem and topological phases of matter, JHEP09 (2016) 022 [arXiv:1607.01873] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [16]M.F. Atiyah and I.M. Singer, The index of elliptic operators. 1, Annals Math.87 (1968) 484.MathSciNetzbMATHGoogle Scholar
- [17]X.-z. Dai and D.S. Freed, η invariants and determinant lines, J. Math. Phys.35 (1994) 5155 [Erratum ibid.42 (2001) 2343] [hep-th/9405012] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [18]M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Phil. Soc.77 (1975) 43.ADSMathSciNetzbMATHGoogle Scholar
- [19]M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Phil. Soc.78 (1976) 405.MathSciNetzbMATHGoogle Scholar
- [20]M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry III, Math. Proc. Cambridge Phil. Soc.79 (1976) 71.ADSMathSciNetzbMATHGoogle Scholar
- [21]S. Monnier, The global anomalies of (2, 0) superconformal field theories in six dimensions, JHEP09 (2014) 088 [arXiv:1406.4540] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [22]S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and string theory, Nucl. Phys.B 306 (1988) 890 [INSPIRE].ADSGoogle Scholar
- [23]E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [24]D.S. Freed, Anomalies and invertible field theories, Proc. Symp. Pure Math.88 (2014) 25 [arXiv:1404.7224] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [25]S. Monnier, A modern point of view on anomalies, arXiv:1903.02828 [INSPIRE].
- [26]F. Benini, C. Córdova and P.-S. Hsin, On 2-group global symmetries and their anomalies, JHEP03 (2019) 118 [arXiv:1803.09336] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [27]L. Nicolaescu, Notes on Seiberg-Witten theory, Graduate studies in mathematics, American Mathematical Society, U.S.A. (2000).Google Scholar
- [28]M. Guo, P. Putrov and J. Wang, Time reversal, SU(N) Yang-Mills and cobordisms: interacting topological superconductors/insulators and quantum spin liquids in 3 + 1D, Annals Phys.394 (2018) 244 [arXiv:1711.11587] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [29]J. Wang et al., Tunneling topological vacua via extended operators: (spin-)TQFT spectra and boundary deconfinement in various dimensions, PTEP2018 (2018) 053A01 [arXiv:1801.05416] [INSPIRE].Google Scholar
- [30]J. McCleary, A user’s guide to spectral sequences, 2nd edition, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge U.K. (2000).Google Scholar
- [31]J. Davis and P. Kirk, Lecture notes in algebraic topology, Graduate studies in mathematics, American Mathematical Society, U.S.A. (2001).zbMATHGoogle Scholar
- [32]D.W. Anderson, E.H. Brown and F.P. Peterson, Spin cobordism, Bull. Amer. Math. Soc.72 (1966) 256.MathSciNetzbMATHGoogle Scholar
- [33]R. Stong, Calculation of \( {\varOmega}_{11}^{\mathrm{spin}} \) (K(Z, 4)), in Unified string theories, M. Green and D. Gross eds., World Scientific, Singapore (1986).Google Scholar
- [34]P. Teichner, Topological four-manifolds with finite fundamental group, Ph.D. thesis, Johannes-Gutenberg Universität, Mainz, Germany (1992).Google Scholar
- [35]P. Teichner, On the signature of four-manifolds with universal covering spin, Math. Ann. (1993) 745.Google Scholar
- [36]J. Adams and J. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, U.S.A. (1995).Google Scholar
- [37]W.T. Wu, Les I-carrés dans une variété grassmannienne, World Scientific, Singapore (2012).zbMATHGoogle Scholar
- [38]A. Borel, La cohomologie mod 2 de certains espaces homogènes, Comm. Math. Helv.27 (1953) 165.zbMATHGoogle Scholar
- [39]E. Milnor et al., Characteristic Classes, Annals of Mathematics Studies, Princeton University Press, Princeton U.S.A. (1974).Google Scholar
- [40]J.H. Fung, The Cohomology of Lie groups, http://math.uchicago.edu/~may/REU2012/REUPapers/Fung.pdf.
- [41]K. Marathe, Topics in physical mathematics: geometric topology and field theory, Springer, Germany (2010).zbMATHGoogle Scholar
- [42]R. Switzer, Algebraic topology: homotopy and homology, Classics in Mathematics, Springer, Germany (2002).zbMATHGoogle Scholar
- [43]K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys.B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [44]A.N. Redlich, Gauge noninvariance and parity violation of three-dimensional fermions, Phys. Rev. Lett.52 (1984) 18 [INSPIRE].ADSMathSciNetGoogle Scholar
- [45]A.N. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev.D 29 (1984) 2366 [INSPIRE].ADSMathSciNetGoogle Scholar
- [46]D. Husemöller, M. Joachim, B. Jurco and M. Schottenloher, Basic bundle theory and K-cohomology invariants, Lecture Notes in Physics, Springer, Germany (2007).zbMATHGoogle Scholar
- [47]D.-E. Diaconescu, G.W. Moore and E. Witten, E 8gauge theory and a derivation of k-theory from M-theory, Adv. Theor. Math. Phys.6 (2003) 1031 [hep-th/0005090] [INSPIRE].Google Scholar
- [48]A. Bahri and P. Gilkey, The eta invariant, pincbordism, and equivariant spincbordism for cyclic 2-groups., Pacific J. Math.128 (1987) 1.MathSciNetzbMATHGoogle Scholar
- [49]E. Witten, Topological tools in ten-dimensional physics, Int. J. Mod. Phys.A 1 (1986) 39 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [50]D. Fuchs and O. Viro, Topology II: homotopy and homology. classical manifolds, Encyclopaedia of Mathematical Sciences, Springer, Germany (2003).Google Scholar
- [51]A. Borel, Topology of lie groups and characteristic classes, Bull. Amer. Math. Soc.61 (1955) 397.MathSciNetzbMATHGoogle Scholar
- [52]A. Borel and J.P. Serre, Groupes de Lie et puissances reduites de Steenrod, Amer. J. Math.75 (1953) 409.MathSciNetzbMATHGoogle Scholar
- [53]D. Tong, Line operators in the standard model, JHEP07 (2017) 104 [arXiv:1705.01853] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [54]S. Monnier, G.W. Moore and D.S. Park, Quantization of anomaly coefficients in 6D \( \mathcal{N} \) = (1,0) supergravity, JHEP02(2018) 020 [arXiv:1711.04777] [INSPIRE].ADSGoogle Scholar
- [55]K.-w. Choi, D.B. Kaplan and A.E. Nelson, Is CP a gauge symmetry?, Nucl. Phys.B 391 (1993) 515 [hep-ph/9205202] [INSPIRE].
- [56]P. Gilkey, The geometry of spherical space form groups, Series in pure mathematics, World Scientific, Singapore (1989).Google Scholar
- [57]M. Berg, C. DeWitt-Morette, S. Gwo and E. Kramer, The pin groups in physics: C, P and T, Rev. Math. Phys.13 (2001) 953 [math-ph/0012006] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [58]Y. Tachikawa and K. Yonekura, Why are fractional charges of orientifolds compatible with Dirac quantization?, arXiv:1805.02772 [INSPIRE].
- [59]X. Gu, On the cohomology of the classifying spaces of projective unitary groups, arXiv:1612.00506.
- [60]J. Rotman, An introduction to algebraic topology, Graduate Texts in Mathematics, Springer, Germany (1998).Google Scholar
- [61]L. Breen, R. Mikhailov and A. Touzé, Derived functors of the divided power functors, arXiv:1312.5676.
- [62]H. Cartan, Séminaire Henri Cartan de l’Ecole Normale Supérieure, 1954/1955. Algèbres d’Eilenberg-MacLane et homotopie, (1967).Google Scholar
- [63]N. Pointet-Tischler, La suspension cohomologique des espaces d’Eilenberg-MacLane, Compt. Rend. Acad. Sci. Ser.I 325 (1997) 1113.MathSciNetzbMATHGoogle Scholar
- [64]N. Tischler, Invariants de Postnikov des espaces de lacets, Ph.D. thesis, Université de Lausanne, Lausanne, Switzerland (1996).Google Scholar
- [65]A. Clément, Integral cohomology of finite Postnikov towers, Ph.D. thesis, Université de Lausanne, Lausanne, Switzerland (2002).Google Scholar
- [66]M. Feshbach, The integral cohomology rings of the classifying spaces of o(n) and so(n), Indiana Univ. Math. J.32 (1983) 511.MathSciNetzbMATHGoogle Scholar
- [67]E. H. Brown, The cohomology of BSO nand BO nwith integer coefficients, Proc. Amer. Math. Soc.85 (1982) 283.MathSciNetGoogle Scholar
- [68]M. Feshbach, The integral cohomology rings of the classifying spaces of o(n) and so(n), Indiana Univ, Math. Lett.32 (1983) 511.MathSciNetzbMATHGoogle Scholar
- [69]D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups., Math. Ann.194 (1971) 197.MathSciNetzbMATHGoogle Scholar
- [70]A. Kono, On the integral cohomology of bspin(n), J. Math. Kyoto Univ.26 (1986) 333.MathSciNetzbMATHGoogle Scholar
- [71]M. Kameko and M. Mimura, On the Rothenberg-Steenrod spectral sequence for the mod 2 cohomology of classifying spaces of spinor groups, arXiv:0904.0800.
- [72]S.R. Edwards, On the spin bordism of b(e 8 × e 8), Illinois J. Math.35 (1991) 683.MathSciNetGoogle Scholar
- [73]L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett.B 260 (1991) 291 [INSPIRE].ADSGoogle Scholar
- [74]L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys.B 398 (1993) 301 [hep-ph/9210211] [INSPIRE].ADSMathSciNetGoogle Scholar
- [75]H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev.D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].ADSGoogle Scholar
- [76]R.N. Mohapatra and M. Ratz, Gauged discrete symmetries and proton stability, Phys. Rev.D 76 (2007) 095003 [arXiv:0707.4070] [INSPIRE].ADSGoogle Scholar
- [77]H.M. Lee et al., Discrete R symmetries for the MSSM and its singlet extensions, Nucl. Phys.B 850 (2011) 1 [arXiv:1102.3595] [INSPIRE].ADSzbMATHGoogle Scholar
- [78]H.P. Nilles, M. Ratz and P.K.S. Vaudrevange, Origin of family symmetries, Fortsch. Phys.61 (2013) 493 [arXiv:1204.2206] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [79]M.-C. Chen et al., Anomaly-safe discrete groups, Phys. Lett.B 747 (2015) 22 [arXiv:1504.03470] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [80]P.B. Gilkey and B. Botvinnik, The η invariant and the equivariant spin bordism of spherical space form 2 groups, Springer, Germany (1996).zbMATHGoogle Scholar
- [81]P.B. Gilkey, The η invariant of pin manifolds with cyclic fundamental groups, Period. Math. Hung.36 (1998) 139.MathSciNetzbMATHGoogle Scholar
- [82]L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys.B 368 (1992) 3 [INSPIRE].ADSMathSciNetGoogle Scholar
- [83]D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal and temperature, JHEP05 (2017) 091 [arXiv:1703.00501] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [84]D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4, walls and dualities in 2 + 1 dimensions, JHEP01 (2018) 110 [arXiv:1708.06806] [INSPIRE].ADSzbMATHGoogle Scholar
- [85]J.J. van der Bij, A cosmotopological relation for a unified field theory, Phys. Rev.D 76 (2007) 121702 [arXiv:0708.4179] [INSPIRE].ADSGoogle Scholar
- [86]G.E. Volovik and M.A. Zubkov, Standard model as the topological material, New J. Phys.19 (2017) 015009 [arXiv:1608.07777] [INSPIRE].ADSGoogle Scholar
- [87]T.P. Cheng and L.F. Li, Gauge theory of elementary particle physics, Clarendon Press, Oxford U.K. (1984).Google Scholar
- [88]Particle Data Group collaboration, Review of particle physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].
- [89]L.N. Chang and C. Soo, The standard model with gravity couplings, Phys. Rev.C 53 (1996) 5682 [hep-th/9406188] [INSPIRE].ADSGoogle Scholar
- [90]C. Csáki, The minimal supersymmetric standard model (MSSM), Mod. Phys. Lett.A 11 (1996) 599 [hep-ph/9606414] [INSPIRE].ADSGoogle Scholar
- [91]F. Dillen and L. Verstraelen, Handbook of differential geometry, volume 1, Elsevier Science, The Netherlands (1999).Google Scholar
- [92]T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev.D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].ADSMathSciNetGoogle Scholar
- [93]M. Berasaluce-González, M. Montero, A. Retolaza and A.M. Uranga, Discrete gauge symmetries from (closed string) tachyon condensation, JHEP11 (2013) 144 [arXiv:1305.6788] [INSPIRE].ADSGoogle Scholar
- [94]I. García-Etxebarria, M. Montero and A.M. Uranga, Closed tachyon solitons in type-II string theory, Fortsch. Phys.63 (2015) 571 [arXiv:1505.05510] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [95]S. Hellerman, On the landscape of superstring theory in D > 10, hep-th/0405041 [INSPIRE].
- [96]K. Shiozaki, H. Shapourian and S. Ryu, Many-body topological invariants in fermionic symmetry-protected topological phases, Phys. Rev.B 95 (2017) 205139 [arXiv:1609.05970] [INSPIRE].ADSGoogle Scholar
- [97]R. Thom, Some “global” properties of differentiable manifolds, World Scientific, Singapore (2012).Google Scholar
- [98]M.-C. Chen, M. Ratz and A. Trautner, Non-Abelian discrete R symmetries, JHEP09 (2013) 096 [arXiv:1306.5112] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [99]T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].ADSGoogle Scholar
- [100]M. Berasaluce-Gonzalez et al., Non-Abelian discrete gauge symmetries in 4d string models, JHEP09 (2012) 059 [arXiv:1206.2383] [INSPIRE].ADSMathSciNetGoogle Scholar
- [101]J. Polchinski, Monopoles, duality and string theory, Int. J. Mod. Phys.A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [102]D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP02 (2015) 172 [arXiv:1412.5148] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [103]Y. Tachikawa and K. Yonekura, On time-reversal anomaly of 2 + 1d topological phases, PTEP2017 (2017) 033B04 [arXiv:1610.07010] [INSPIRE].Google Scholar
- [104]E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.22 (1997) 103 [hep-th/9610234] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [105]D.S. Freed and G.W. Moore, Setting the quantum integrand of M-theory, Commun. Math. Phys.263 (2006) 89 [hep-th/0409135] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [106]A. Hattori, Integral characteristic numbers for weakly almost complex manifolds, Topology5 (1966) 259.MathSciNetzbMATHGoogle Scholar
- [107]R. Stong, Relations among characteristic numbers — I, Topology4 (1965) 267.MathSciNetzbMATHGoogle Scholar
- [108]M.J. Hopkins and M.A. Hovey, Spin cobordism determines real K-theory, Math. Zeit.210 (1992) 181.MathSciNetzbMATHGoogle Scholar
- [109]O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP01 (2014) 079 [arXiv:1310.2150] [INSPIRE].ADSGoogle Scholar
- [110]S. Sethi, A new string in ten dimensions?, JHEP09 (2013) 149 [arXiv:1304.1551] [INSPIRE].ADSMathSciNetGoogle Scholar
- [111]A. Dold and H. Whitney, Classification of oriented sphere bundles over a 4-complex, Annals Math.69 (1959) 667.MathSciNetzbMATHGoogle Scholar
- [112]L.M. Woodward, The classification of orientable vector bundles over CW-complexes of small dimension, Proc. Roy. Soc. EdinburghA 92 (1982) 175.MathSciNetzbMATHGoogle Scholar
- [113]R.C. Kirby and L.R. Taylor, A calculation of Pin+bordism groups, Comm. Math. Helv.65 (1990) 434.MathSciNetzbMATHGoogle Scholar
- [114]D.W. Anderson, E.H. Brown and F.P. Peterson, Pin cobordism and related topics, Comm. Math. Helv.44 (1969) 462.MathSciNetzbMATHGoogle Scholar
- [115]S.P. Novikov, Homotopy properties of Thom complexes, World Scientific, Singapore (2012).Google Scholar
- [116]W. Barth, K. Hulek, C. Peters and A. van de Ven, Compact complex surfaces, Series of Modern Surveys in Mathematics, Springer, Germany (2015).Google Scholar