Advertisement

Deformed \( \mathcal{N}=8 \) mechanics of (8, 8, 0) multiplets

  • Evgeny Ivanov
  • Olaf LechtenfeldEmail author
  • Stepan Sidorov
Open Access
Regular Article - Theoretical Physics

Abstract

We construct new models of “curved” SU(4|1) supersymmetric mechanics based on two versions of the off-shell multiplet (8, 8, 0) which are “mirror” to each other. The worldline realizations of the supergroup SU(4|1) are treated as a deformation of flat \( \mathcal{N}=8 \), d = 1 supersymmetry. Using SU(4|1) chiral superfields, we derive invariant actions for the first-type (8, 8, 0) multiplet, which parametrizes special Kähler manifolds. Since we are not aware of a manifestly SU(4|1) covariant superfield formalism for the second-type (8, 8, 0) multiplet, we perform a general construction of SU(4|1) invariant actions for both multiplet types in terms of SU(2|1) superfields. An important class of such actions enjoys superconformal OSp(8|2) invariance. We also build off-shell actions for the SU(4|1) multiplets (6, 8, 2) and (7, 8, 1) through appropriate substitutions for the component fields in the (8, 8, 0) actions. The (6, 8, 2) actions are shown to respect superconformal SU(4|1, 1) invariance.

Keywords

Extended Supersymmetry Superspaces Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    S. Bellucci and A. Nersessian, (Super)oscillator on CP N and constant magnetic field, Phys. Rev. D 67 (2003) 065013 [Erratum ibid. D 71 (2005) 089901] [hep-th/0211070] [INSPIRE].
  3. [3]
    C. Römelsberger, Counting chiral primaries in N = 1, d = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    A.V. Smilga, Weak supersymmetry, Phys. Lett. B 585 (2004) 173 [hep-th/0311023] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    A. Pashnev and F. Toppan, On the classification of \( \mathcal{N} \) -extended supersymmetric quantum mechanical systems, J. Math. Phys. 42 (2001) 5257 [hep-th/0010135] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    E. Ivanov and S. Sidorov, Deformed Supersymmetric Mechanics, Class. Quant. Grav. 31 (2014) 075013 [arXiv:1307.7690] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    E. Ivanov and S. Sidorov, Super Kähler oscillator from SU(2|1) superspace, J. Phys. A 47 (2014) 292002 [arXiv:1312.6821] [INSPIRE].zbMATHGoogle Scholar
  8. [8]
    E. Ivanov, S. Sidorov and F. Toppan, Superconformal mechanics in SU(2|1) superspace, Phys. Rev. D 91 (2015) 085032 [arXiv:1501.05622] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    E. Ivanov and S. Sidorov, SU(2|1) mechanics and harmonic superspace, Class. Quant. Grav. 33 (2016) 055001 [arXiv:1507.00987] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    S. Fedoruk and E. Ivanov, Gauged spinning models with deformed supersymmetry, JHEP 11 (2016) 103 [arXiv:1610.04202] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    S. Fedoruk, E. Ivanov and S. Sidorov, Deformed supersymmetric quantum mechanics with spin variables, JHEP 01 (2018) 132 [arXiv:1710.02130] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    S. Fedoruk, E. Ivanov, O. Lechtenfeld and S. Sidorov, Quantum SU(2|1) supersymmetric Calogero-Moser spinning systems, JHEP 04 (2018) 043 [arXiv:1801.00206] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    E. Ivanov, O. Lechtenfeld and S. Sidorov, SU(2|2) supersymmetric mechanics, JHEP 11 (2016) 031 [arXiv:1609.00490] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    S. Bellucci, E. Ivanov, S. Krivonos and O. Lechtenfeld, N = 8 superconformal mechanics, Nucl. Phys. B 684 (2004) 321 [hep-th/0312322] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    S. Bellucci, E. Ivanov, S. Krivonos and O. Lechtenfeld, ABC of N = 8, d = 1 supermultiplets, Nucl. Phys. B 699 (2004) 226 [hep-th/0406015] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    S. Bellucci, E. Ivanov and A. Sutulin, N = 8 mechanics in SU(2) × SU(2) harmonic superspace, Nucl. Phys. B 722 (2005) 297 [Erratum ibid. B 747 (2006) 464] [hep-th/0504185] [INSPIRE].
  17. [17]
    E. Ivanov, O. Lechtenfeld and A. Sutulin, Hierarchy of N = 8 Mechanics Models, Nucl. Phys. B 790 (2008) 493 [arXiv:0705.3064] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    S. Bellucci, S. Krivonos and A. Nersessian, N = 8 supersymmetric mechanics on special Kähler manifolds, Phys. Lett. B 605 (2005) 181 [hep-th/0410029] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    E.A. Ivanov and A.V. Smilga, Symplectic σ-models in superspace, Nucl. Phys. B 694 (2004) 473 [hep-th/0402041] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    D.-E. Diaconescu and R. Entin, A Nonrenormalization theorem for the d = 1, N = 8 vector multiplet, Phys. Rev. D 56 (1997) 8045 [hep-th/9706059] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    F. Toppan, On Chiral and Nonchiral 1D Supermultiplets, in Proceedings, 13th Regional Conference on Mathematical Physics, Antalya, Turkey, October 27–31, 2010, pp. 227–237 (2012) [DOI: https://doi.org/10.1142/9789814417532_0017] [arXiv:1105.2016] [INSPIRE].
  22. [22]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory: Volume 1, Cambridge University Press (1987) [INSPIRE].
  23. [23]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory: Volume 2, Cambridge University Press (1988) [INSPIRE].
  24. [24]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace, Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].
  25. [25]
    F. Delduc and E. Ivanov, N = 4 mechanics of general (4, 4, 0) multiplets, Nucl. Phys. B 855 (2012) 815 [arXiv:1107.1429] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    S. Fedoruk, E. Ivanov and A. Smilga, \( \mathcal{N}=4 \) mechanics with diverse (4, 4, 0) multiplets: Explicit examples of hyper-Kähler with torsion, Clifford Kähler with torsion and octonionic Kähler with torsion geometries, J. Math. Phys. 55 (2014) 052302 [arXiv:1309.7253] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    N. Kim and J.-H. Park, Superalgebra for M-theory on a pp wave, Phys. Rev. D 66 (2002) 106007 [hep-th/0207061] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    L. Motl, A. Neitzke and M.M. Sheikh-Jabbari, Heterotic plane wave matrix models and giant gluons, JHEP 06 (2003) 058 [hep-th/0306051] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    C.T. Asplund, F. Denef and E. Dzienkowski, Massive quiver matrix models for massive charged particles in AdS, JHEP 01 (2016) 055 [arXiv:1510.04398] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    E. Ivanov, L. Mezincescu, A. Pashnev and P.K. Townsend, Odd coset quantum mechanics, Phys. Lett. B 566 (2003) 175 [hep-th/0301241] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    M. Goykhman, E. Ivanov and S. Sidorov, Super Landau Models on Odd Cosets, Phys. Rev. D 87 (2013) 025026 [arXiv:1208.3418] [INSPIRE].ADSGoogle Scholar
  32. [32]
    E. Ivanov, S. Kalitsyn, A.V. Nguyen and V. Ogievetsky, Harmonic Superspaces of Extended Supersymmetry. The Calculus of Harmonic Variables, J. Phys. A 18 (1985) 3433 [INSPIRE].
  33. [33]
    N.L. Holanda and F. Toppan, Four types of (super)conformal mechanics: D-module reps and invariant actions, J. Math. Phys. 55 (2014) 061703 [arXiv:1402.7298] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    Z. Kuznetsova and F. Toppan, D-module Representations of N = 2, 4, 8 Superconformal Algebras and Their Superconformal Mechanics, J. Math. Phys. 53 (2012) 043513 [arXiv:1112.0995] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. [35]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013[hep-th/0202021] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    K. Dasgupta, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Matrix perturbation theory for M-theory on a PP wave, JHEP 05 (2002) 056 [hep-th/0205185] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    K. Dasgupta, M.M. Sheikh-Jabbari and M. Van Raamsdonk, Protected multiplets of M-theory on a plane wave, JHEP 09 (2002) 021 [hep-th/0207050] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    F. Delduc and E. Ivanov, Gauging N = 4 Supersymmetric Mechanics, Nucl. Phys. B 753 (2006) 211 [hep-th/0605211] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    S. Fedoruk, E. Ivanov and O. Lechtenfeld, Supersymmetric Calogero models by gauging, Phys. Rev. D 79 (2009) 105015 [arXiv:0812.4276] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    S. Khodaee and F. Toppan, Critical scaling dimension of D-module representations of N = 4, 7, 8 Superconformal Algebras and constraints on Superconformal Mechanics, J. Math. Phys. 53 (2012) 103518 [arXiv:1208.3612] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    F. Toppan, Critical D-module reps for finite superconformal algebras and their superconformal mechanics, in 29th International Colloquium on Group-Theoretical Methods in Physics (GROUP 29), Tianjin, China, August 20–26, 2012 (2013) [arXiv:1302.3459] [INSPIRE].
  42. [42]
    N. Aizawa, Z. Kuznetsova and F. Toppan, The quasi-nonassociative exceptional F(4) deformed quantum oscillator, J. Math. Phys. 59 (2018) 022101 [arXiv:1711.02923] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Evgeny Ivanov
    • 1
  • Olaf Lechtenfeld
    • 2
    Email author
  • Stepan Sidorov
    • 1
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia
  2. 2.Institut für Theoretische Physik and Riemann Center for Geometry and PhysicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations