Long-lived heavy neutrinos from Higgs decays

  • Frank F. Deppisch
  • Wei Liu
  • Manimala MitraEmail author
Open Access
Regular Article - Theoretical Physics


We investigate the pair-production of right-handed neutrinos via the Standard Model (SM) Higgs boson in a gauged BL model. The right-handed neutrinos with a mass of few tens of GeV generating viable light neutrino masses via the seesaw mechanism naturally exhibit displaced vertices and distinctive signatures at the LHC and proposed lepton colliders. The production rate of the right-handed neutrinos depends on the mixing between the SM Higgs and the exotic Higgs associated with the BL breaking, whereas their decay length depends on the active-sterile neutrino mixing. We focus on the displaced leptonic final states arising from such a process, and analyze the sensitivity reach of the LHC and proposed lepton colliders in probing the active-sterile neutrino mixing. We show that mixing to muons as small as VμN ≈ 10−7 can be probed at the LHC with 100 fb−1 and at proposed lepton colliders with 5000 fb−1. The future high luminosity run at LHC and the proposed MATHUSLA detector may further improve this reach by an order of magnitude.


Beyond Standard Model Neutrino Physics Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R.N. Mohapatra and R.E. Marshak, Local B-L symmetry of electroweak interactions, Majorana neutrinos and neutron oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].
  2. [2]
    P. Fileviez Perez, T. Han and T. Li, Testability of Type I seesaw at the CERN LHC: revealing the existence of the B-L symmetry, Phys. Rev. D 80 (2009) 073015 [arXiv:0907.4186] [INSPIRE].ADSGoogle Scholar
  3. [3]
    F.F. Deppisch, N. Desai and J.W.F. Valle, Is charged lepton flavor violation a high energy phenomenon?, Phys. Rev. D 89 (2014) 051302 [arXiv:1308.6789] [INSPIRE].ADSGoogle Scholar
  4. [4]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  5. [5]
    B. Batell, M. Pospelov and B. Shuve, Shedding light on neutrino masses with dark forces, JHEP 08 (2016) 052 [arXiv:1604.06099] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Heeck, Unbroken B-L symmetry, Phys. Lett. B 739 (2014) 256 [arXiv:1408.6845] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].
  8. [8]
    SLAC E158 collaboration, P.L. Anthony et al., Observation of parity nonconservation in Moller scattering, Phys. Rev. Lett. 92 (2004) 181602 [hep-ex/0312035] [INSPIRE].
  9. [9]
    SLD Electroweak Group, SLD Heavy Flavor Group, DELPHI, LEP, ALEPH, OPAL, LEP Electroweak Working Group, L3 collaboration, A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0312023 [INSPIRE].
  10. [10]
    M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Zgauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].
  11. [11]
    S. Antusch, E. Cazzato and O. Fischer, Heavy neutrino-antineutrino oscillations at colliders, arXiv:1709.03797 [INSPIRE].
  12. [12]
    CMS collaboration, Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052012 [arXiv:1411.6977].
  13. [13]
    CMS collaboration, Search for long-lived particles that decay into final states containing two muons, reconstructed using only the CMS muon chambers, CMS-PAS-EXO-14-012 (2014).
  14. [14]
    CMS Collaboration, Search for long-lived particles decaying to final states that include dileptons, CMS-PAS-EXO-12-037 (2012).
  15. [15]
    CMS collaboration, Search for heavy Majorana neutrinos in μ ± μ ±+ jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 748 (2015) 144 [arXiv:1501.05566] [INSPIRE].
  16. [16]
    CMS collaboration, Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 120 (2018) 221801 [arXiv:1802.02965] [INSPIRE].
  17. [17]
    E. Izaguirre and B. Shuve, Multilepton and lepton jet probes of sub-weak-scale right-handed neutrinos, Phys. Rev. D 91 (2015) 093010 [arXiv:1504.02470] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches via displaced vertices at LHCb, Phys. Lett. B 774 (2017) 114 [arXiv:1706.05990] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. E. Shrock and M. Suzuki, Invisible decays of Higgs bosons, Phys. Lett. B 110 (1982) 250.ADSCrossRefGoogle Scholar
  20. [20]
    A. Maiezza, M. Nemevšek and F. Nesti, Lepton number violation in Higgs decay at LHC, Phys. Rev. Lett. 115 (2015) 081802 [arXiv:1503.06834] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Long lived light scalars as probe of low scale seesaw models, Nucl. Phys. B 923 (2017) 179 [arXiv:1703.02471] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Caputo, P. Hernández, J. Lopez-Pavon and J. Salvado, The seesaw portal in testable models of neutrino masses, JHEP 06 (2017) 112 [arXiv:1704.08721] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E. Accomando et al., Novel SM-like Higgs decay into displaced heavy neutrino pairs in U(1)′ models, JHEP 04 (2017) 081 [arXiv:1612.05977] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Das, P.S.B. Dev and C.S. Kim, Constraining sterile neutrinos from precision Higgs data, Phys. Rev. D 95 (2017) 115013 [arXiv:1704.00880] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Nemevšek, F. Nesti and J.C. Vasquez, Majorana Higgses at colliders, JHEP 04 (2017) 114 [arXiv:1612.06840] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Antusch, E. Cazzato and O. Fischer, Displaced vertex searches for sterile neutrinos at future lepton colliders, JHEP 12 (2016) 007 [arXiv:1604.02420] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future e e + , pp and e p colliders, Int. J. Mod. Phys. A 32 (2017) 1750078 [arXiv:1612.02728] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Cottin, J.C. Helo and M. Hirsch, Searches for light sterile neutrinos with multitrack displaced vertices, Phys. Rev. D 97 (2018) 055025 [arXiv:1801.02734] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.C. Helo, M. Hirsch and Z.S. Wang, Heavy neutral fermions at the high-luminosity LHC, JHEP 07 (2018) 056 [arXiv:1803.02212] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Mandal, M. Mitra and N. Sinha, Constraining the right-handed gauge boson mass from lepton number violating meson decays in a low scale left-right model, Phys. Rev. D 96 (2017) 035023 [arXiv:1705.01932] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Nemevšek, F. Nesti and G. Popara, Keung-Senjanović process at the LHC: from lepton number violation to displaced vertices to invisible decays, Phys. Rev. D 97 (2018) 115018 [arXiv:1801.05813] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Lindner, M. Platscher and F.S. Queiroz, A call for new physics: the muon anomalous magnetic moment and lepton flavor violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    Y. Cai, T. Han, T. Li and R. Ruiz, Lepton number violation: seesaw models and their collider tests, Front. in Phys. 6 (2018) 40 [arXiv:1711.02180] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.P. Chou, D. Curtin and H.J. Lubatti, New detectors to explore the lifetime frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Robens and T. Stefaniak, Status of the Higgs singlet extension of the standard model after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  37. [37]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P.S. Bhupal Dev and A. Pilaftsis, Light and superlight sterile neutrinos in the minimal radiative inverse seesaw model, Phys. Rev. D 87 (2013) 053007 [arXiv:1212.3808] [INSPIRE].ADSGoogle Scholar
  39. [39]
    G.M. Pruna, Phenomenology of the minimal BL model: the Higgs sector at the Large Hadron Collider and future Linear Colliders, arXiv:1106.4691 [INSPIRE].
  40. [40]
    CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  41. [41]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  42. [42]
    S. Banerjee, M. Mitra and M. Spannowsky, Searching for a Heavy Higgs boson in a Higgs-portal B-L Model, Phys. Rev. D 92 (2015) 055013 [arXiv:1506.06415] [INSPIRE].ADSGoogle Scholar
  43. [43]
    D. López-Val and T. Robens, Δr and the W-boson mass in the singlet extension of the standard model, Phys. Rev. D 90 (2014) 114018 [arXiv:1406.1043] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    ATLAS collaboration, Search for a light Higgs boson decaying to long-lived weakly-interacting particles in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 251801 [arXiv:1203.1303] [INSPIRE].
  46. [46]
    H. Abramowicz et al., The International Linear Collider Technical Design Report - Volume 4: Detectors, arXiv:1306.6329 [INSPIRE].
  47. [47]
    H. Aihara et al., SiD letter of intent, arXiv:0911.0006 [INSPIRE].
  48. [48]
    CEPC-SPPC study group, CEPC-SPPC preliminary conceptual design report. 1. Physics and Detector, IHEP-CEPC-DR-2015-01 (2015) [IHEP-TH-2015-01] [IHEP-EP-2015-01].Google Scholar
  49. [49]
    ATLAS collaboration, Search for long-lived, heavy particles in final states with a muon and multi-track displaced vertex in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 280 [arXiv:1210.7451] [INSPIRE].
  50. [50]
    LHCb collaboration, Search for massive long-lived particles decaying semileptonically in the LHCb detector, Eur. Phys. J. C 77 (2017) 224 [arXiv:1612.00945] [INSPIRE].
  51. [51]
    LHCb collaboration, Search for dark photons produced in 13 TeV pp collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].
  52. [52]
    A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  53. [53]
    L. Basso et al., Phenomenology of the minimal B-L extension of the Standard model: Zand neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].ADSGoogle Scholar
  54. [54]
    C. Degrande et al., UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [INSPIRE].
  56. [56]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  57. [57]
    J. Gu, H. Li, Z. Liu, S. Su and W. Su, Learning from Higgs physics at future Higgs factories, JHEP 12 (2017) 153 [arXiv:1709.06103] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.University College LondonLondonU.K.
  2. 2.Institute of Physics (IOP)BhubaneswarIndia
  3. 3.Homi Bhabha National Institute, Training School ComplexMumbaiIndia

Personalised recommendations