c-Recursion for multi-point superconformal blocks. NS sector

  • Vladimir Belavin
  • Roman GeikoEmail author
Open Access
Regular Article - Theoretical Physics


We develop a recursive approach to computing Neveu-Schwarz conformal blocks associated with n-punctured Riemann surfaces. This work generalizes the results of [1] obtained recently for the Virasoro algebra. The method is based on the analysis of the analytic properties of the superconformal blocks considered as functions of the central charge c. It consists of two main ingredients: the study of the singular behavior of the conformal blocks and the analysis of their asymptotic properties when c tends to infinity. The proposed construction is applicable for computing multi-point blocks in different topologies. We consider some examples for genus zero and one with different numbers of punctures. As a by-product, we propose a new way to solve the recursion relations, which gives more efficient computational procedure and can be applied to SCFT case as well as to pure Virasoro blocks.


Conformal Field Theory Conformal and W Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Cho, S. Collier and X. Yin, Recursive Representations of Arbitrary Virasoro Conformal Blocks, arXiv:1703.09805 [INSPIRE].
  2. [2]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, arXiv:1805.04405 [INSPIRE].
  4. [4]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Belavin and V. Belavin, AGT conjecture and Integrable structure of Conformal field theory for c = 1, Nucl. Phys. B 850 (2011) 199 [arXiv:1102.0343] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.CrossRefGoogle Scholar
  10. [10]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Recursion representation of the Neveu-Schwarz superconformal block, JHEP 03 (2007) 032 [hep-th/0611266] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    V.A. Belavin, N = 1 supersymmetric conformal block recursion relations, Theor. Math. Phys. 152 (2007) 1275 [Teor. Mat. Fiz. 152 (2007) 476] [hep-th/0611295] [INSPIRE].
  13. [13]
    A. Belavin, V. Belavin, A. Neveu and A. Zamolodchikov, Bootstrap in Supersymmetric Liouville Field Theory. I. NS Sector, Nucl. Phys. B 784 (2007) 202 [hep-th/0703084] [INSPIRE].
  14. [14]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063 [arXiv:0911.2353] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Recurrence relations for toric N = 1 superconformal blocks, JHEP 09 (2012) 122 [arXiv:1207.5740] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  17. [17]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    K.B. Alkalaev and V.A. Belavin, Classical conformal blocks via AdS/CFT correspondence, JHEP 08 (2015) 049 [arXiv:1504.05943] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    K.B. Alkalaev and V.A. Belavin, Monodromic vs geodesic computation of Virasoro classical conformal blocks, Nucl. Phys. B 904 (2016) 367 [arXiv:1510.06685] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].ADSzbMATHGoogle Scholar
  23. [23]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Holographic Conformal Partial Waves as Gravitational Open Wilson Networks, JHEP 06 (2016) 119 [arXiv:1602.02962] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    K.B. Alkalaev, Many-point classical conformal blocks and geodesic networks on the hyperbolic plane, JHEP 12 (2016) 070 [arXiv:1610.06717] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    V.A. Belavin and R.V. Geiko, Geodesic description of Heavy-Light Virasoro blocks, JHEP 08 (2017) 125 [arXiv:1705.10950] [INSPIRE].
  27. [27]
    P. Kraus, A. Maloney, H. Maxfield, G.S. Ng and J.-q. Wu, Witten Diagrams for Torus Conformal Blocks, JHEP 09 (2017) 149 [arXiv:1706.00047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    K.B. Alkalaev and V.A. Belavin, Holographic duals of large-c torus conformal blocks, JHEP 10 (2017) 140 [arXiv:1707.09311] [INSPIRE].
  29. [29]
    M. Nishida and K. Tamaoka, Fermions in Geodesic Witten Diagrams, JHEP 07 (2018) 149 [arXiv:1805.00217] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Scalar Blocks as Gravitational Wilson Networks, arXiv:1806.05475 [INSPIRE].
  31. [31]
    Y. Hikida and T. Uetoko, Superconformal blocks from Wilson lines with loop corrections, arXiv:1806.05836 [INSPIRE].
  32. [32]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    Y. Kusuki, New Properties of Large-c Conformal Blocks from Recursion Relation, JHEP 07 (2018) 010 [arXiv:1804.06171] [INSPIRE].
  34. [34]
    Y. Kusuki, Large c Virasoro Blocks from Monodromy Method beyond Known Limits, arXiv:1806.04352 [INSPIRE].
  35. [35]
    A.L. Fitzpatrick, J. Kaplan, Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, Covariant Approaches to Superconformal Blocks, JHEP 08 (2014) 129 [arXiv:1402.1167] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    H. Chen, A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Degenerate Operators and the 1/c Expansion: Lorentzian Resummations, High Order Computations and Super-Virasoro Blocks, JHEP 03 (2017) 167 [arXiv:1606.02659] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    E. Perlmutter, Virasoro conformal blocks in closed form, JHEP 08 (2015) 088 [arXiv:1502.07742] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    Y. Nakayama, Liouville field theory: A Decade after the revolution, Int. J. Mod. Phys. A 19 (2004) 2771 [hep-th/0402009] [INSPIRE].
  40. [40]
    H. Poghosyan, The light asymptotic limit of conformal blocks in \( \mathcal{N}=1 \) super Liouville field theory, JHEP 09 (2017) 062 [arXiv:1706.07474] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    K.B. Alkalaev and V.A. Belavin, From global to heavy-light: 5-point conformal blocks, JHEP 03 (2016) 184 [arXiv:1512.07627] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    M. Cho, S. Collier and X. Yin, Genus Two Modular Bootstrap, arXiv:1705.05865 [INSPIRE].
  43. [43]
    L. Hollands, C.A. Keller and J. Song, Towards a 4d/2d correspondence for Sicilian quivers, JHEP 10 (2011) 100 [arXiv:1107.0973] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    K.B. Alkalaev, R.V. Geiko and V.A. Rappoport, Various semiclassical limits of torus conformal blocks, JHEP 04 (2017) 070 [arXiv:1612.05891] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    K. Alkalaev and V. Belavin, Large-c superconformal torus blocks, JHEP 08 (2018) 042 [arXiv:1805.12585] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    N. Javerzat, R. Santachiara and O. Foda, Notes on the solutions of Zamolodchikov-type recursion relations in Virasoro minimal models, arXiv:1806.02790 [INSPIRE].
  47. [47]
    M.R. Gaberdiel, C.A. Keller and R. Volpato, Genus Two Partition Functions of Chiral Conformal Field Theories, Commun. Num. Theor. Phys. 4 (2010) 295 [arXiv:1002.3371] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Rényi entropies of large c conformal field theories, J. Phys. A 50 (2017) 435401 [arXiv:1704.08250] [INSPIRE].ADSzbMATHGoogle Scholar
  49. [49]
    C.A. Keller, G. Mathys and I.G. Zadeh, Bootstrapping Chiral CFTs at Genus Two, arXiv:1705.05862 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.I.E. Tamm Department of Theoretical PhysicsP.N. Lebedev Physical InstituteMoscowRussia
  2. 2.Department of Quantum PhysicsInstitute for Information Transmission ProblemsMoscowRussia
  3. 3.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  4. 4.National Research University Higher School of EconomicsMoscowRussia
  5. 5.Center for Advanced StudiesSkolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations