Advertisement

Twist-field representations of W-algebras, exact conformal blocks and character identities

  • M. Bershtein
  • P. Gavrylenko
  • A. Marshakov
Open Access
Regular Article - Theoretical Physics

Abstract

We study the twist-field representations of W-algebras and generalize construction of the corresponding vertex operators to D- and B-series. It is shown, how the computation of characters of these representations leads to nontrivial identities involving lattice theta-functions. We also propose a way to calculate their exact conformal blocks, expressing them for D-series in terms of geometric data of the corresponding Prym variety for covering curve with involution.

Keywords

Conformal and W Symmetry Integrable Hierarchies 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.B. Zamolodchikov, Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory, Theor. Math. Phys. 65 (1985) 1205 [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    V.A. Fateev and A.B. Zamolodchikov, Conformal Quantum Field Theory Models in Two-Dimensions Having Z(3) Symmetry, Nucl. Phys. B 280 (1987) 644 [INSPIRE].
  3. [3]
    V.A. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [INSPIRE].
  4. [4]
    A.S. Losev, A. Marshakov and N.A. Nekrasov, Small instantons, little strings and free fermions, hep-th/0302191 [INSPIRE].
  5. [5]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].
  6. [6]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, JHEP 03 (2016) 181 [arXiv:1512.05388] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Henneaux and S.-J. Rey, Nonlinear W as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].
  9. [9]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].
  11. [11]
    E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs 88, American Mathematical Society, (2004).Google Scholar
  12. [12]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
  13. [13]
    I.B. Frenkel and V.G. Kac, Basic Representations of Affine Lie Algebras and Dual Resonance Models, Invent. Math. 62 (1980) 23.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P.G. Gavrylenko and A.V. Marshakov, Free fermions, W-algebras and isomonodromic deformations, Theor. Math. Phys. 187 (2016) 649 [arXiv:1605.04554] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    O. Gamayun, N. Iorgov and O. Lisovyy, Conformal field theory of Painlevé VI, JHEP 10 (2012) 038 [Erratum ibid. 10 (2012) 183] [arXiv:1207.0787] [INSPIRE].
  16. [16]
    N. Iorgov, O. Lisovyy and J. Teschner, Isomonodromic tau-functions from Liouville conformal blocks, Commun. Math. Phys. 336 (2015) 671 [arXiv:1401.6104] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Gavrylenko, Isomonodromic τ -functions and W N conformal blocks, JHEP 09 (2015) 167 [arXiv:1505.00259] [INSPIRE].
  18. [18]
    P. Gavrylenko and A. Marshakov, Exact conformal blocks for the W-algebras, twist fields and isomonodromic deformations, JHEP 02 (2016) 181 [arXiv:1507.08794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A.B. Zamolodchikov, Conformal Scalar Field on the Hyperelliptic Curve and Critical Ashkin-teller Multipoint Correlation Functions, Nucl. Phys. B 285 (1987) 481 [INSPIRE].
  20. [20]
    A.B. Zamolodchikov, Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model, JETP 90 (1986) 1808.MathSciNetGoogle Scholar
  21. [21]
    S. Apikyan and Al. Zamolodchikov, Conformal blocks, related to conformally invariant Ramond states of a free scalar field, JETP 92 (1987) 34.Google Scholar
  22. [22]
    V. Kac, Infinite dimensional Lie algebras, Cambridge University Press, (1990).Google Scholar
  23. [23]
    B. Bakalov and V. Kac, Twisted Modules over Lattice Vertex Algebras, in Proc. V Internat. Workshop “Lie Theory and Its Applications in Physics” (Varna, June 2003), eds. H.-D. Doebner and V.K. Dobrev, World Scientific, Singapore, (2004) [math/0402315].
  24. [24]
    I. Macdonald, Affine root systems and Dedekind’s η-function, Invent. Math. 15 (1972) 91.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    V. Kac, Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the very strange formula, Adv. Math. 30 (1978) 85.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    B. Feigin and E. Frenkel, Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. J. Mod. Phys. A 7S1A (1992) 197 [INSPIRE].
  27. [27]
    H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, U.S.A. (1939).Google Scholar
  28. [28]
    E. Frenkel, V. Kac, A. Radul and W.-Q. Wang, W 1+∞ and W (gl N ) with central charge N, Commun. Math. Phys. 170 (1995) 337 [hep-th/9405121] [INSPIRE].
  29. [29]
    V.G. Kac and J.W. van de Leur, The n-component KP hierarchy and representation theory, J. Math. Phys. 44 (2003) 3245 [hep-th/9308137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    O. Alvarez, P. Windey and M.L. Mangano, Vertex operator construction of the So(2n+1) Kac-Moody algebra and its spinor representation,, Nucl. Phys. B 277 (1986) 317 [INSPIRE].
  31. [31]
    R. Dijkgraaf, C. Vafa, E.P. Verlinde and H.L. Verlinde, The Operator Algebra of Orbifold Models, Commun. Math. Phys. 123 (1989) 485 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Dijkgraaf, V. Pasquier and P. Roche, Quasi-quantum groups related to orbifold models, Nucl. Phys. Proc. Suppl. B 18 (1990) 60.Google Scholar
  33. [33]
    V.G. Knizhnik, Analytic Fields on Riemann Surfaces. II, Commun. Math. Phys. 112 (1987) 567 [INSPIRE].
  34. [34]
    V.G. Knizhnik, Multiloop amplitudes in the theory of quantum strings and complex geometry, Sov. Phys. Usp. 32 (1989) 945.ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    A. Marshakov, A. Mironov, A. Morozov and M. Olshanetsky, c = r G theories of W G gravity: The set of observables as a model of simply laced G, Nucl. Phys. B 404 (1993) 427 [hep-th/9203044] [INSPIRE].
  36. [36]
    T. Arakawa, Quantized Reductions and Irreducible Representations of W-Algebras, math/0403477.
  37. [37]
    T. Arakawa, Representation Theory of W-Algebras, Invent. Math. 169 2 (2007) 219 [math/0506056].
  38. [38]
    E. Frenkel, V. Kac and M. Wakimoto, Characters and fusion rules for W algebras via quantized Drinfeld-Sokolov reductions, Commun. Math. Phys. 147 (1992) 295 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    V.A. Fateev and A.V. Litvinov, Integrable structure, W-symmetry and AGT relation, JHEP 01 (2012) 051 [arXiv:1109.4042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    V.G. Kac and D.H. Peterson, 112 constructions of the basic representation of the loop group of E 8, in Proc. of the conf. “Anomalies, Geometry, Topology”, Argonne, March 1985, World Scientific, (1985), pp. 276-298.Google Scholar
  41. [41]
    J. Lepowsky and R.L. Wilson, Construction of the affine Lie algebra \( \mathfrak{s}\mathfrak{l}(2) \), Commun. Math. Phys. 62 (1978) 43 [INSPIRE].
  42. [42]
    V.G. Kac, D.A. Kazhdan, J. Lepowsky and R.L. Wilson, Realization of the basic representations of the Euclidean Lie algebras, Adv. Math. 42 (1981) 83.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    S. Lukyanov, Additional Symmetries and Exactly Solvable Models in Two Dimensional Conformal Field Theory, Ph.D. Thesis (in Russian), (1989).Google Scholar
  44. [44]
    G.M.T. Watts, WB algebra representation theory, Nucl. Phys. B 339 (1990) 177 [INSPIRE].
  45. [45]
    J. Fay, Theta-functions on Riemann surfaces, Lect. Notes Math. 352, Springer, N.Y., U.S.A., (1973).Google Scholar
  46. [46]
    A. Kokotov and D. Korotkin, Tau-function on Hurwitz spaces, Math. Phys. Anal. Geom. 7 (2004) 47 [math-ph/0202034].
  47. [47]
    P. Di Francesco, H. Saleur and J.B. Zuber, Critical Ising Correlation Functions in the Plane and on the Torus, Nucl. Phys. B 290 (1987) 527 [INSPIRE].
  48. [48]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, C = 1 Conformal Field Theories on Riemann Surfaces, Commun. Math. Phys. 115 (1988) 649 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    D. Bernard, ℤ2 -twisted fields and bosonization on Riemann surfaces, Nucl. Phys. B 302 (1988) 251 [INSPIRE].
  50. [50]
    A.A. Belavin, M.A. Bershtein and G.M. Tarnopolsky, Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity, JHEP 03 (2013) 019 [arXiv:1211.2788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    J. Fuchs, B. Schellekens and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Commun. Math. Phys. 180 (1996) 39 [hep-th/9506135] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Center for Advanced Studies, SkoltechMoscowRussia
  3. 3.Department of Mathematics and Laboratory for Mathematical Physics, NRU HSEMoscowRussia
  4. 4.Institute for Information Transmission ProblemsMoscowRussia
  5. 5.Independent University of MoscowMoscowRussia
  6. 6.Bogolyubov Institute for Theoretical PhysicsKyivUkraine
  7. 7.Institute for Theoretical and Experimental PhysicsMoscowRussia
  8. 8.Theory Department of Lebedev Physics InstituteMoscowRussia

Personalised recommendations