Advertisement

Time evolution of a toy semiholographic glasma

  • Christian Ecker
  • Ayan Mukhopadhyay
  • Florian PreisEmail author
  • Anton Rebhan
  • Alexander Soloviev
Open Access
Regular Article - Theoretical Physics

Abstract

We extend our previous study of a toy model for coupling classical Yang-Mills equations for describing overoccupied gluons at the saturation scale with a strongly coupled infrared sector modeled by AdS/CFT. Including propagating modes in the bulk we find that the Yang-Mills sector loses its initial energy to a growing black hole in the gravity dual such that there is a conserved energy-momentum tensor for the total system while entropy grows monotonically. This involves a numerical AdS simulation with a backreacted boundary source far from equilibrium.

Keywords

AdS-CFT Correspondence Black Holes Holography and quark-gluon plasmas Quark-Gluon Plasma 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Romatschke and U. Romatschke, Relativistic fluid dynamics in and out of equilibrium — Ten years of progress in theory and numerical simulations of nuclear collisions, arXiv:1712.05815 [INSPIRE].
  3. [3]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Lappi and L. McLerran, Some features of the glasma, Nucl. Phys. A 772 (2006) 200 [hep-ph/0602189] [INSPIRE].
  5. [5]
    P. Romatschke and R. Venugopalan, The unstable glasma, Phys. Rev. D 74 (2006) 045011 [hep-ph/0605045] [INSPIRE].
  6. [6]
    T. Epelbaum and F. Gelis, Pressure isotropization in high energy heavy ion collisions, Phys. Rev. Lett. 111 (2013) 232301 [arXiv:1307.2214] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Universal attractor in a highly occupied non-Abelian plasma, Phys. Rev. D 89 (2014) 114007 [arXiv:1311.3005] [INSPIRE].
  8. [8]
    A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom up’ thermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].
  10. [10]
    A. Kurkela and G.D. Moore, Bjorken flow, plasma instabilities and thermalization, JHEP 11 (2011) 120 [arXiv:1108.4684] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    O. DeWolfe, S. S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically Anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P.M. Chesler and W. van der Schee, Early thermalization, hydrodynamics and energy loss in AdS/CFT, Int. J. Mod. Phys. E 24 (2015) 1530011 [arXiv:1501.04952] [INSPIRE].
  14. [14]
    W. van der Schee, P. Romatschke and S. Pratt, Fully dynamical simulation of central nuclear collisions, Phys. Rev. Lett. 111 (2013) 222302 [arXiv:1307.2539] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, A hybrid strong/weak coupling approach to jet quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
  16. [16]
    V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
  17. [17]
    D. Steineder, S.A. Stricker and A. Vuorinen, Holographic Thermalization at Intermediate Coupling, Phys. Rev. Lett. 110 (2013) 101601 [arXiv:1209.0291] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.A. Stricker, Holographic thermalization in N = 4 Super Yang-Mills theory at finite coupling, Eur. Phys. J. C 74 (2014) 2727 [arXiv:1307.2736] [INSPIRE].
  19. [19]
    S. Waeber and A. Schäfer, Studying a charged quark gluon plasma via holography and higher derivative corrections, JHEP 07 (2018) 069 [arXiv:1804.01912] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Iancu and A. Mukhopadhyay, A semi-holographic model for heavy-ion collisions, JHEP 06 (2015) 003 [arXiv:1410.6448] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Mukhopadhyay, F. Preis, A. Rebhan and S.A. Stricker, Semi-Holography for Heavy Ion Collisions: Self-Consistency and First Numerical Tests, JHEP 05 (2016) 141 [arXiv:1512.06445] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Banerjee, N. Gaddam and A. Mukhopadhyay, Illustrated study of the semiholographic nonperturbative framework, Phys. Rev. D 95 (2017) 066017 [arXiv:1701.01229] [INSPIRE].
  23. [23]
    A. Kurkela , A. Mukhopadhyay, F. Preis, A. Rebhan and A. Soloviev, Hybrid fluid models from mutual effective metric couplings, JHEP 08 (2018) 054 [arXiv:1805.05213] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    G. Duffing, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung, Sammlung Vieweg 41-42 (1918).Google Scholar
  26. [26]
    S. Bravo Yuste and J. Diaz Bejarano, Construction of approximate analytical solutions to a new class of non-linear oscillator equations, J. Sound Vibr. 110 (1986) 347.ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].
  28. [28]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Attems et al., Holographic collisions in non-conformal theories, JHEP 01 (2017) 026 [arXiv:1604.06439] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Fujii and K. Itakura, Expanding color flux tubes and instabilities, Nucl. Phys. A 809 (2008) 88 [arXiv:0803.0410] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Christian Ecker
    • 1
  • Ayan Mukhopadhyay
    • 1
    • 2
  • Florian Preis
    • 1
    Email author
  • Anton Rebhan
    • 1
  • Alexander Soloviev
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität WienViennaAustria
  2. 2.Department of PhysicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations