Advertisement

Holographic local quench and effective complexity

  • Dmitry Ageev
  • Irina Aref’eva
  • Andrey Bagrov
  • Mikhail I. Katsnelson
Open Access
Regular Article - Theoretical Physics

Abstract

We study the evolution of holographic complexity of pure and mixed states in 1 + 1-dimensional conformal field theory following a local quench using both the “complexity equals volume” (CV) and the “complexity equals action” (CA) conjectures. We compare the complexity evolution to the evolution of entanglement entropy and entanglement density, discuss the Lloyd computational bound and demonstrate its saturation in certain regimes. We argue that the conjectured holographic complexities exhibit some non-trivial features indicating that they capture important properties of what is expected to be effective (or physical) complexity.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex, St. Martin’s Griffin, New York, U.S.A., (1995).zbMATHGoogle Scholar
  2. [2]
    L. Cockayne, Plate section, in The Vegetation of New Zealand, Cambridge University Press, (2011), [ https://doi.org/10.1017/cbo9781139058605.034].
  3. [3]
    S. Lloyd, Measures of complexity: a nonexhaustive list, IEEE Control Syst. Mag. 21 (2001) 7.Google Scholar
  4. [4]
    M. Gell-Mann and S. Lloyd, Information measures, effective complexity, and total information, Complexity 2 (1996) 44.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. Badii and A. Politi, Complexity. Hierarchical Structures and Scaling in Physics, Cambridge University Press, (1997).Google Scholar
  6. [6]
    P. Bak, How Nature Works. The Science of Self-Organized Criticality, Springer, New York, U.S.A., (1996).zbMATHGoogle Scholar
  7. [7]
    C. Adami, What is complexity?, Bioessays 24 (2002) 1085.CrossRefGoogle Scholar
  8. [8]
    E.V. Koonin, The meaning of biological information, Phil. Trans. A 374 (2016) 20150065.ADSCrossRefGoogle Scholar
  9. [9]
    M.I. Katsnelson, Y.I. Wolf and E.V. Koonin, Towards physical principles of biological evolution, Phys. Scripta 93 (2018) 043001.ADSCrossRefGoogle Scholar
  10. [10]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  13. [13]
    L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
  15. [15]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 071602 [arXiv:1703.00456] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP 11 (2017) 097 [arXiv:1706.07056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Couch, W. Fischler and P.H. Nguyen, Noether charge, black hole volume and complexity, JHEP 03 (2017) 119 [arXiv:1610.02038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Reynolds and S.F. Ross, Divergences in Holographic Complexity, Class. Quant. Grav. 34 (2017) 105004 [arXiv:1612.05439] [INSPIRE].
  22. [22]
    D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    O. Ben-Ami and D. Carmi, On Volumes of Subregions in Holography and Complexity, JHEP 11 (2016) 129 [arXiv:1609.02514] [INSPIRE].
  24. [24]
    R. Abt et al., Topological Complexity in AdS 3 /CFT 2, Fortsch. Phys. 66 (2018) 1800034 [arXiv:1710.01327] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    S. Banerjee, J. Erdmenger and D. Sarkar, Connecting Fisher information to bulk entanglement in holography, JHEP 08 (2018) 001 [arXiv:1701.02319] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Chapman, H. Marrochio and R.C. Myers, Complexity of Formation in Holography, JHEP 01 (2017) 062 [arXiv:1610.08063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    B. Swingle and Y. Wang, Holographic Complexity of Einstein-Maxwell-Dilaton Gravity, arXiv:1712.09826 [INSPIRE].
  29. [29]
    Y.-S. An and R.-H. Peng, Effect of the dilaton on holographic complexity growth, Phys. Rev. D 97 (2018) 066022 [arXiv:1801.03638] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Alishahiha, A. Faraji Astaneh, M.R. Mohammadi Mozaffar and A. Mollabashi, Complexity Growth with Lifshitz Scaling and Hyperscaling Violation, JHEP 07 (2018) 042 [arXiv:1802.06740] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP 02 (2018) 082 [arXiv:1710.00600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Moosa, Divergences in the rate of complexification, Phys. Rev. D 97 (2018) 106016 [arXiv:1712.07137] [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Moosa, Evolution of Complexity Following a Global Quench, JHEP 03 (2018) 031 [arXiv:1711.02668] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    B. Chen, W.-M. Li, R.-Q. Yang, C.-Y. Zhang and S.-J. Zhang, Holographic subregion complexity under a thermal quench, JHEP 07 (2018) 034 [arXiv:1803.06680] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M.I. Katsnelson, V.V. Dobrovitski and B.N. Harmon, Propagation of local decohering action in distributed quantum systems, Phys. Rev. A 62 (2000) 022118.ADSCrossRefGoogle Scholar
  36. [36]
    S.D. Hamieh and M.I. Katsnelson, Quantum entanglement and decoherence wave in spin chains at finite temperatures, Phys. Rev. A 72 (2005) 032316.ADSCrossRefGoogle Scholar
  37. [37]
    H.C. Donker, H. De Raedt and M.I. Katsnelson, Decoherence wave in magnetic systems and creation of Neel antiferromagnetic state by measurement, Phys. Rev. B 93 (2016) 184426.ADSCrossRefGoogle Scholar
  38. [38]
    P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech. 0710 (2007) P10004 [arXiv:0708.3750] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    P. Caputa, J. Simón, A. Štikonas, T. Takayanagi and K. Watanabe, Scrambling time from local perturbations of the eternal BTZ black hole, JHEP 08 (2015) 011 [arXiv:1503.08161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum Entanglement of Localized Excited States at Finite Temperature, JHEP 01 (2015) 102 [arXiv:1410.2287] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev. D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D.S. Ageev, I. Ya. Aref’eva and M.D. Tikhanovskaya, (1+1)-Correlators and moving massive defects, Theor. Math. Phys. 188 (2016) 1038 [arXiv:1512.03362] [INSPIRE].
  45. [45]
    D.S. Ageev and I. Ya. Aref’eva, Holographic instant conformal symmetry breaking by colliding conical defects, Theor. Math. Phys. 189 (2016) 1742 [arXiv:1512.03363] [INSPIRE].
  46. [46]
    I. Ya. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Thermalization after holographic bilocal quench, JHEP 09 (2017) 115 [arXiv:1706.07390] [INSPIRE].
  47. [47]
    A. Jahn and T. Takayanagi, Holographic entanglement entropy of local quenches in AdS4/CFT3: a finite-element approach, J. Phys. A 51 (2018) 015401 [arXiv:1705.04705] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    J.R. David, S. Khetrapal and S.P. Kumar, Local quenches and quantum chaos from higher spin perturbations, JHEP 10 (2017) 156 [arXiv:1707.07166] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    T. De Jonckheere and J. Lindgren, Entanglement entropy in inhomogeneous quenches in AdS 3 /CFT 2, arXiv:1803.04718 [INSPIRE].
  50. [50]
    G. Carleo and M. Troyer, Solving the quantum many-body problem with artificial neural networks, Science 355 (2017) 602.ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    G.T. Horowitz and N. Itzhaki, Black holes, shock waves and causality in the AdS/CFT correspondence, JHEP 02 (1999) 010 [hep-th/9901012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    M.A. Valdez, D. Jaschke, D.L. Vargas and L.D. Carr, Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks, Phys. Rev. Lett. 119 (2017) 225301.ADSCrossRefGoogle Scholar
  55. [55]
    B. Sundar et al., A complex network description of thermal quantum states in the Ising spin chain, Phys. Rev. A 97 (2018) 052320 [arXiv:1803.00994].ADSCrossRefGoogle Scholar
  56. [56]
    J. Anandan and Y. Aharonov, Geometry of Quantum Evolution, Phys. Rev. Lett. 65 (1990) 1697 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    Y. Aharonov and D. Bohm, Time in the Quantum Theory and the Uncertainty Relation for Time and Energy, Phys. Rev. 122 (1961) 1649 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    N. Margolus and L.B. Levitin, The Maximum speed of dynamical evolution, Physica D 120 (1998) 188.Google Scholar
  59. [59]
    M. Lachmann, M.E.J. Newman and C. Moore, The physical limits of communication or Why any sufficiently advanced technology is indistinguishable from noise, Am. J. Phys. 72 (2004) 1290.ADSCrossRefGoogle Scholar
  60. [60]
    S. Lloyd, V. Giovannetti and L. Maccone, Physical Limits to Communication, Phys. Rev. Lett. 93 (2004) 100501.ADSCrossRefGoogle Scholar
  61. [61]
    V. Giovannetti, S. Lloyd and L. Maccone, The speed limit of quantum unitary evolution, J. Opt. B 6 (2004) S807.ADSGoogle Scholar
  62. [62]
    S. Lloyd, Computational capacity of the universe, Phys. Rev. Lett. 88 (2002) 237901 [quant-ph/0110141] [INSPIRE].
  63. [63]
    S. Lloyd, The Computational universe: Quantum gravity from quantum computation, [quant-ph/0501135] [INSPIRE].
  64. [64]
    S. Lloyd, Quantum limits to the measurement of spacetime geometry, quant-ph/0505064 [INSPIRE].
  65. [65]
    D.H. Wolpert and W. Macready, Self-dissimilarity as a high dimensional complexity measure, in Y. Bar-Yam, International Conference on Complex Systems, (2004).Google Scholar
  66. [66]
    K. Nagasaki, Complexity of AdS 5 black holes with a rotating string, Phys. Rev. D 96 (2017) 126018 [arXiv:1707.08376] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Dmitry Ageev
    • 1
    • 2
  • Irina Aref’eva
    • 1
    • 2
  • Andrey Bagrov
    • 1
    • 2
  • Mikhail I. Katsnelson
    • 1
    • 2
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Molecules and MaterialsRadboud UniversityNijmegenNetherlands

Personalised recommendations