# Fall to the centre in atom traps and point-particle EFT for absorptive systems

- 48 Downloads
- 1 Citations

## Abstract

Polarizable atoms interacting with a charged wire do so through an inverse-square potential, *V* = −*g/r*^{2}. This system is known to realize scale invariance in a nontrivial way and to be subject to ambiguities associated with the choice of boundary condition at the origin, often termed the problem of ‘fall to the center’. Point-particle effective field theory (PPEFT) provides a systematic framework for determining the boundary condition in terms of the properties of the source residing at the origin. We apply this formalism to the charged-wire/polarizable-atom problem, finding a result that is not a self-adjoint extension because of absorption of atoms by the wire. We explore the RG flow of the complex coupling constant for the dominant low-energy effective interactions, finding flows whose character is qualitatively different when *g* is above or below a critical value, *g*_{c}. Unlike the self-adjoint case, (complex) fixed points exist when *g > g*_{c}, which we show correspond to perfect absorber (or perfect emitter) boundary conditions. We describe experimental consequences for wire-atom interactions and the possibility of observing the anomalous breaking of scale invariance.

## Keywords

Effective Field Theories Renormalization Group Nonperturbative Effects## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]L. Landau and E. Lifshitz,
*Mechanics*, Elsevier Science (1982).Google Scholar - [2]
- [3]A.M. Perelomov and V.S. Popov,
*Collapse onto scattering centre in quantum mechanics*,*Teor. Mat. Fiz.***4**(1970) 48 [INSPIRE].CrossRefGoogle Scholar - [4]S.P. Alliluev,
*The problem of collapse to the center in quantum mechanics*,*JETP***34**(1972) 8.ADSGoogle Scholar - [5]R. Jackiw,
*Delta function potentials in two-dimensional and three-dimensional quantum mechanics*, in*Diverse topics in theoretical and mathematical physics*, World Scientific (1991), pp. 25-42.Google Scholar - [6]K.S. Gupta and S.G. Rajeev,
*Renormalization in quantum mechanics*,*Phys. Rev.***D 48**(1993) 5940 [hep-th/9305052] [INSPIRE]. - [7]S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire and U. van Kolck,
*Singular potentials and limit cycles*,*Phys. Rev.***A 64**(2001) 042103 [quant-ph/0010073] [INSPIRE]. - [8]S.A. Coon and B.R. Holstein,
*Anomalies in Quantum Mechanics: the*1*/r*^{2}*Potential*,*Am. J. Phys.***70**(2002) 513 [quant-ph/0202091] [INSPIRE]. - [9]M. Bawin and S.A. Coon,
*The Singular inverse square potential, limit cycles and selfadjoint extensions*,*Phys. Rev.***A 67**(2003) 042712 [quant-ph/0302199] [INSPIRE]. - [10]E.J. Mueller and T.-L. Ho,
*Renormalization Group Limit Cycles in Quantum Mechanical Problems*, [cond-mat/0403283]. - [11]E. Braaten and D. Phillips,
*The Renormalization group limit cycle for the*1*/r*^{2}*potential*,*Phys. Rev.***A 70**(2004) 052111 [hep-th/0403168] [INSPIRE]. - [12]F. Werner,
*Trapped cold atoms with resonant interactions: unitary gas and three-body problem*, Theses, Université Pierre et Marie Curie — Paris VI, Paris France (2008).Google Scholar - [13]D. Bouaziz and M. Bawin,
*Singular inverse-square potential: renormalization and self-adjoint extensions for medium to weak coupling*,*Phys. Rev.***A 89**(2014) 022113 [arXiv:1402.5325] [INSPIRE]. - [14]C.P. Burgess, P. Hayman, M. Williams and L. Zalavari,
*Point-Particle Effective Field Theory I: Classical Renormalization and the Inverse-Square Potential*,*JHEP***04**(2017) 106 [arXiv:1612.07313] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [15]C.P. Burgess, P. Hayman, M. Rummel, M. Williams and L. Zalavari,
*Point-Particle Effective Field Theory II: Relativistic Effects and Coulomb/Inverse-Square Competition*,*JHEP***07**(2017) 072 [arXiv:1612.07334] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [16]C.P. Burgess, P. Hayman, M. Rummel and L. Zalavari,
*Point-Particle Effective Field Theory III: Relativistic Fermions and the Dirac Equation*,*JHEP***09**(2017) 007 [arXiv:1706.01063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [17]
- [18]C.P. Burgess,
*Introduction to Effective Field Theory*,*Ann. Rev. Nucl. Part. Sci.***57**(2007) 329 [hep-th/0701053] [INSPIRE]. - [19]E. Vogt and G.H. Wannier,
*Scattering of Ions by Polarization Forces*,*Phys. Rev.***95**(1954) 1190 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [20]D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov,
*Conformality Lost*,*Phys. Rev.***D 80**(2009) 125005 [arXiv:0905.4752] [INSPIRE]. - [21]S. Moroz and R. Schmidt,
*Nonrelativistic inverse square potential, scale anomaly and complex extension*,*Annals Phys.***325**(2010) 491 [arXiv:0909.3477] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [22]L.D. Landau and L.M. Lifshitz,
*Quantum Mechanics Non-Relativistic Theory. Volume 3*, Third Edition, Butterworth-Heinemann (1981).Google Scholar - [23]W.D. Goldberger and I.Z. Rothstein,
*Dissipative effects in the worldline approach to black hole dynamics*,*Phys. Rev.***D 73**(2006) 104030 [hep-th/0511133] [INSPIRE].ADSMathSciNetGoogle Scholar - [24]J. Denschlag, G. Umshaus and J. Schmiedmayer,
*Probing a Singular Potential with Cold Atoms: A Neutral Atom and a Charged Wire*,*Phys. Rev. Lett.***81**(1998) 737.ADSCrossRefGoogle Scholar - [25]C. Pethick and H. Smith,
*Bose-Einstein Condensation in Dilute Gases*, Cambridge University Press (2002).Google Scholar - [26]V. Efimov,
*Energy levels arising form the resonant two-body forces in a three-body system*,*Phys. Lett.***B 33**(1970) 563 [INSPIRE]. - [27]E. Braaten and H.W. Hammer,
*Universality in few-body systems with large scattering length*,*Phys. Rept.***428**(2006) 259 [cond-mat/0410417] [INSPIRE]. - [28]N. Iqbal and H. Liu,
*Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm*,*Phys. Rev.***D 79**(2009) 025023 [arXiv:0809.3808] [INSPIRE]. - [29]W.-J. Li and J.-P. Wu,
*Holographic fermions in charged dilaton black branes*,*Nucl. Phys.***B 867**(2013) 810 [arXiv:1203.0674] [INSPIRE]. - [30]B. Engquist and A. Majda,
*Absorbing boundary conditions for numerical simulation of waves*,*Proc. Nat. Acad. Sci.***74**(1977) 1765.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [31]M.J. Gander and L. Halpern,
*Absorbing boundary conditions for the wave equation and parallel computing*,*Math. Comput.***74**(2005) 153.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [32]H.E. Camblong and C.R. Ordonez,
*Anomaly in conformal quantum mechanics: From molecular physics to black holes*,*Phys. Rev.***D 68**(2003) 125013 [hep-th/0303166] [INSPIRE]. - [33]H.W. Hammer and B.G. Swingle,
*On the limit cycle for the*1*/r*^{2}*potential in momentum space*,*Annals Phys.***321**(2006) 306 [quant-ph/0503074] [INSPIRE]. - [34]
- [35]D.B. Kaplan, M.J. Savage and M.B. Wise,
*Nucleon-nucleon scattering from effective field theory*,*Nucl. Phys.***B 478**(1996) 629 [nucl-th/9605002] [INSPIRE]. - [36]T. Mehen and I.W. Stewart,
*A Momentum subtraction scheme for two nucleon effective field theory*,*Phys. Lett.***B 445**(1999) 378 [nucl-th/9809071] [INSPIRE]. - [37]S.K. Adhikari,
*Quantum scattering in two dimensions*,*Am. J. Phys.***54**(1986) 362.ADSMathSciNetCrossRefGoogle Scholar - [38]K. Meetz,
*Singular potentials in nonrelativistic quantum mechanics*,*Nuovo Cim.***34**(1964) 690.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [39]A.C. Fonseca, E.F. Redish and P.E. Shanley,
*Efimov effect in an analytically solvable mode*,*Nucl. Phys.***A 320**(1979) 273 [INSPIRE]. - [40]T. Kraemer et al.,
*Evidence for Efimov quantum states in an ultracold gas of caesium atoms*,*Nature***440**(2006) 315.ADSCrossRefGoogle Scholar - [41]E. Braaten and H.W. Hammer,
*Efimov Physics in Cold Atoms*,*Annals Phys.***322**(2007) 120 [cond-mat/0612123] [INSPIRE]. - [42]L. Platter,
*Few-Body Systems and the Pionless Effective Field Theory*, in proceedings of the*6th International Workshop on Chiral Dynamics (CD09)*, Bern, Switzerland, 6-10 July 2009, p. 104 [PoS(CD09)104] [arXiv:0910.0031] [INSPIRE]. - [43]H.W. Hammer and L. Platter,
*Efimov states in nuclear and particle physics*,*Ann. Rev. Nucl. Part. Sci.***60**(2010) 207 [arXiv:1001.1981] [INSPIRE].ADSCrossRefGoogle Scholar - [44]H.W. Hammer and L. Platter,
*Efimov physics from a renormalization group perspective*,*Philos. Trans. Roy. Soc. Lond.***A 369**(2011) 2679.Google Scholar - [45]D.J. MacNeill and F. Zhou,
*Pauli blocking effect on Efimov states near a feshbach resonance*,*Phys. Rev. Lett.***106**(2011) 145301.ADSCrossRefGoogle Scholar - [46]R. Grimm, M. Weidemüller and Y.B. Ovchinnikov,
*Optical dipole traps for neutral atoms*,*Adv. At. Mol. Opt. Phys.***42**(2000) 95.ADSCrossRefGoogle Scholar - [47]R. Plestid, C. Burgess and D.H.J. O’Dell,
*Tunable quantum anomaly with cold atoms in an inverse square potential*, in preparation.Google Scholar - [48]C.P. Burgess, P. Hayman, M. Rummel and L. Zalavari,
*Reduced Theoretical Error for QED Tests with*^{4}*He*^{+}*Spectroscopy*, arXiv:1708.09768 [INSPIRE]. - [49]J. Sakurai,
*Modern Quantum Mechanics*, Addison-Wesely (1988).Google Scholar - [50]F.W.J. Olver and National Institute of Standards and Technology (U.S.),
*NIST Handbook of Mathematical Functions*, Cambridge University Press (2010).Google Scholar - [51]W.D. Goldberger and I.Z. Rothstein,
*Dissipative effects in the worldline approach to black hole dynamics*,*Phys. Rev.***D 73**(2006) 104030 [hep-th/0511133] [INSPIRE].