# Kähler uniformization from holographic renormalization group flows of M5-branes

- 32 Downloads

## Abstract

In this paper, we initiate the study of holographic renormalization group flows for the metric of four-manifolds. In particular, we derive a set of equations which govern the evolution of a generic Kähler four-manifold along the renormalization group flow in seven-dimensional gauged supergravity. The physical eleven-dimensional M-theory setup is given by a stack of M5-branes wrapping a calibrated Kähler four-cycle inside a Calabi-Yau threefold. By topologically twisting the theory in the ultraviolet, we may choose an arbitrary Kähler metric on the four-cycle as an asymptotic boundary condition. We find that at the infrared fixed point, we reach a Kähler-Einstein metric, which can be interpreted as an indication of “uniformizing” behavior of the flow.

## Keywords

AdS-CFT Correspondence M-Theory Renormalization Group Supergravity Models## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]M.H. Freedman,
*The topology of four-dimensional manifolds*,*J. Diff. Geom.***17**(1982) 357.MathSciNetCrossRefMATHGoogle Scholar - [2]R.S. Hamilton,
*Three-manifolds with positive ricci curvature*,*J. Diff. Geom.***17**(1982) 255.MathSciNetCrossRefMATHGoogle Scholar - [3]R.S. Hamilton,
*The formation of singularities in the Ricci flow*,*Surveys Diff. Geom.***II**(1995) 7.Google Scholar - [4]W.P. Thurston,
*Three dimensional manifolds, Kleinian groups and hyperbolic geometry*,*Bull. Am. Math. Soc.***6**(1982) 357.MathSciNetCrossRefMATHGoogle Scholar - [5]G. Perelman,
*The entropy formula for the Ricci flow and its geometric applications*, math/0211159 [INSPIRE]. - [6]J. Streets and G. Tian,
*Hermitian Curvature Flow*, arXiv:0804.4109. - [7]J. Streets and G. Tian,
*A parabolic flow of pluriclosed metrics*,*Int. Math. Res. Not.***2010**(2010) 3101.MathSciNetMATHGoogle Scholar - [8]J. Streets and G. Tian,
*Regularity results for pluriclosed flow*, arXiv:1008.2794. - [9]D.H. Friedan,
*Nonlinear Models in Two + Epsilon Dimensions*,*Annals Phys.***163**(1985) 318 [INSPIRE].ADSCrossRefMATHGoogle Scholar - [10]E. Witten,
*Topological Quantum Field Theory*,*Commun. Math. Phys.***117**(1988) 353 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [11]N. Seiberg and E. Witten,
*Electric-magnetic duality, monopole condensation and confinement in N*= 2*supersymmetric Yang-Mills theory*,*Nucl. Phys.***B 426**(1994) 19 [*Erratum ibid.***B 430**(1994) 485] [hep-th/9407087] [INSPIRE]. - [12]N. Seiberg and E. Witten,
*Monopoles, duality and chiral symmetry breaking in N*= 2*supersymmetric QCD*,*Nucl. Phys.***B 431**(1994) 484 [hep-th/9408099] [INSPIRE]. - [13]E. Witten,
*Monopoles and four manifolds*,*Math. Res. Lett.***1**(1994) 769 [hep-th/9411102] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [14]J.M. Maldacena and C. Núñez,
*Supergravity description of field theories on curved manifolds and a no go theorem*,*Int. J. Mod. Phys.***A 16**(2001) 822 [hep-th/0007018] [INSPIRE]. - [15]J.P. Gauntlett, N. Kim and D. Waldram,
*M Five-branes wrapped on supersymmetric cycles*,*Phys. Rev.***D 63**(2001) 126001 [hep-th/0012195] [INSPIRE].ADSGoogle Scholar - [16]J.P. Gauntlett and N. Kim,
*M five-branes wrapped on supersymmetric cycles. 2.*,*Phys. Rev.***D 65**(2002) 086003 [hep-th/0109039] [INSPIRE]. - [17]F. Benini and N. Bobev,
*Exact two-dimensional superconformal R-symmetry and c-extremization*,*Phys. Rev. Lett.***110**(2013) 061601 [arXiv:1211.4030] [INSPIRE]. - [18]F. Benini and N. Bobev,
*Two-dimensional SCFTs from wrapped branes and c-extremization*,*JHEP***06**(2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [19]P. Karndumri and E. Ó Colgáin,
*3D supergravity from wrapped M5-branes*,*JHEP***03**(2016) 188 [arXiv:1508.00963] [INSPIRE]. - [20]I. Bah and V. Stylianou,
*Gravity duals of N*= (0*,*2)*SCFTs from M5-branes*, arXiv:1508.04135 [INSPIRE]. - [21]M. Bershadsky, C. Vafa and V. Sadov,
*D-branes and topological field theories*,*Nucl. Phys.***B 463**(1996) 420 [hep-th/9511222] [INSPIRE]. - [22]M.T. Anderson, C. Beem, N. Bobev and L. Rastelli,
*Holographic Uniformization*,*Commun. Math. Phys.***318**(2013) 429 [arXiv:1109.3724] [INSPIRE]. - [23]D. Gaiotto,
*N*= 2*dualities*,*JHEP***08**(2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar - [24]D. Gaiotto, G.W. Moore and A. Neitzke,
*Four-dimensional wall-crossing via three-dimensional field theory*,*Commun. Math. Phys.***299**(2010) 163 [arXiv:0807.4723] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [25]D. Gaiotto, G.W. Moore and A. Neitzke,
*Wall-crossing, Hitchin Systems and the WKB Approximation*, arXiv:0907.3987 [INSPIRE]. - [26]N. Bobev and P.M. Crichigno,
*Universal RG Flows Across Dimensions and Holography*,*JHEP***12**(2017) 065 [arXiv:1708.05052] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [27]K. Becker, M. Becker and A. Strominger,
*Five-branes, membranes and nonperturbative string theory*,*Nucl. Phys.***B 456**(1995) 130 [hep-th/9507158] [INSPIRE]. - [28]K. Becker, M. Becker, D.R. Morrison, H. Ooguri, Y. Oz and Z. Yin,
*Supersymmetric cycles in exceptional holonomy manifolds and Calabi-Yau 4 folds*,*Nucl. Phys.***B 480**(1996) 225 [hep-th/9608116] [INSPIRE]. - [29]J.P. Gauntlett, N.D. Lambert and P.C. West,
*Branes and calibrated geometries*,*Commun. Math. Phys.***202**(1999) 571 [hep-th/9803216] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [30]G.W. Gibbons and G. Papadopoulos,
*Calibrations and intersecting branes*,*Commun. Math. Phys.***202**(1999) 593 [hep-th/9803163] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [31]J.P. Gauntlett,
*Branes, calibrations and supergravity*, in*Strings and geometry. Proceedings, Summer School, Cambridge, U.K., March 24 - April 20, 2002*, pp. 79-126, hep-th/0305074 [INSPIRE]. - [32]J.M. Maldacena,
*The large N limit of superconformal field theories and supergravity*,*Int. J. Theor. Phys.***38**(1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [33]J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram,
*AdS spacetimes from wrapped M5 branes*,*JHEP***11**(2006) 053 [hep-th/0605146] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [34]P. Figueras, O.A.P. Mac Conamhna and E. Ó Colgáin,
*Global geometry of the supersymmetric AdS*_{3}*/CF T*_{2}*correspondence in M-theory*,*Phys. Rev.***D 76**(2007) 046007 [hep-th/0703275] [INSPIRE]. - [35]E. Witten,
*Some comments on string dynamics*, in*Future perspectives in string theory. Proceedings, Conference, Strings’95, Los Angeles, U.S.A., March 13-18, 1995*, pp. 501-523, hep-th/9507121 [INSPIRE]. - [36]N. Seiberg and E. Witten,
*Comments on string dynamics in six-dimensions*,*Nucl. Phys.***B 471**(1996) 121 [hep-th/9603003] [INSPIRE]. - [37]M. Berkooz,
*A supergravity dual of a (1,0) field theory in six-dimensions*,*Phys. Lett.***B 437**(1998) 315 [hep-th/9802195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [38]T. Dimofte, D. Gaiotto and S. Gukov,
*Gauge Theories Labelled by Three-Manifolds*,*Commun. Math. Phys.***325**(2014) 367 [arXiv:1108.4389] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [39]T. Dimofte, D. Gaiotto and S. Gukov,
*3-Manifolds and 3d Indices*,*Adv. Theor. Math. Phys.***17**(2013) 975 [arXiv:1112.5179] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [40]
- [41]T. Dimofte,
*3d Superconformal Theories from Three-Manifolds*, in*New Dualities of Supersymmetric Gauge Theories*, J. Teschner ed., (2016) pp. 339, [arXiv:1412.7129]. - [42]M. Pernici, K. Pilch and P. van Nieuwenhuizen,
*Gauged Maximally Extended Supergravity in Seven-dimensions*,*Phys. Lett.***B 143**(1984) 103 [INSPIRE]. - [43]H. Nastase, D. Vaman and P. van Nieuwenhuizen,
*Consistent nonlinear K K reduction of 11-d supergravity on AdS*_{7}*× S*^{4}*and selfduality in odd dimensions*,*Phys. Lett.***B 469**(1999) 96 [hep-th/9905075] [INSPIRE]. - [44]H. Nastase, D. Vaman and P. van Nieuwenhuizen,
*Consistency of the AdS*_{7}*× S*^{4}*reduction and the origin of selfduality in odd dimensions*,*Nucl. Phys.***B 581**(2000) 179 [hep-th/9911238] [INSPIRE]. - [45]M. Cvetič et al.,
*Embedding AdS black holes in ten-dimensions and eleven-dimensions*,*Nucl. Phys.***B 558**(1999) 96 [hep-th/9903214] [INSPIRE]. - [46]M. Fluder, work in progress.Google Scholar
- [47]B.S. Acharya, J.P. Gauntlett and N. Kim,
*Five-branes wrapped on associative three cycles*,*Phys. Rev.***D 63**(2001) 106003 [hep-th/0011190] [INSPIRE]. - [48]I. Bah, M. Gabella and N. Halmagyi,
*BPS M5-branes as Defects for the 3d-3d Correspondence*,*JHEP***11**(2014) 112 [arXiv:1407.0403] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [49]M. Fluder, unpublished notes.Google Scholar
- [50]J. Song and B. Weinkove,
*Lecture notes on the Kähler-Ricci flow*, arXiv:1212.3653. - [51]H.-D. Cao,
*Deformation of kähler matrics to kähler-einstein metrics on compact kähler manifolds*,*Invent. Math.***81**(1985) 359.ADSMathSciNetCrossRefMATHGoogle Scholar - [52]S.-T. Yau,
*On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, I*,*Commun. Pure Appl. Math.***31**(1978) 339.CrossRefMATHGoogle Scholar - [53]A. Futaki,
*An Obstruction to the Existence of Einstein Kähler Metrics*,*Invent. Math.***73**(1983) 437.ADSMathSciNetCrossRefMATHGoogle Scholar - [54]G. Tian,
*Kähler-einstein metrics with positive scalar curvature*,*Invent. Math.***130**(1997) 1.ADSMathSciNetCrossRefMATHGoogle Scholar - [55]B.S. Acharya and S. Gukov,
*M theory and singularities of exceptional holonomy manifolds*,*Phys. Rept.***392**(2004) 121 [hep-th/0409191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [56]M. Itoh,
*Moduli of half conformally flat structures*,*Math. Ann.***296**(1993) 687.MathSciNetCrossRefMATHGoogle Scholar - [57]L.F. Alday, D. Gaiotto and Y. Tachikawa,
*Liouville Correlation Functions from Four-dimensional Gauge Theories*,*Lett. Math. Phys.***91**(2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [58]
- [59]I. Bah, C. Beem, N. Bobev and B. Wecht,
*AdS/CFT Dual Pairs from M5-Branes on Riemann Surfaces*,*Phys. Rev.***D 85**(2012) 121901 [arXiv:1112.5487] [INSPIRE]. - [60]I. Bah, C. Beem, N. Bobev and B. Wecht,
*Four-Dimensional SCFTs from M5-Branes*,*JHEP***06**(2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [61]M.F. Atiyah and R. Bott,
*The Yang-Mills equations over Riemann surfaces*,*Phil. Trans. Roy. Soc. Lond.***A 308**(1982) 523 [INSPIRE]. - [62]C. Beem and A. Gadde,
*The N*= 1*superconformal index for class S fixed points*,*JHEP***04**(2014) 036 [arXiv:1212.1467] [INSPIRE].