Advertisement

Toward precision holography in type IIA with Wilson loops

  • Jeremías Aguilera-Damia
  • Alberto Faraggi
  • Leopoldo A. Pando Zayas
  • Vimal Rathee
  • Guillermo A. Silva
Open Access
Regular Article - Theoretical Physics
  • 50 Downloads

Abstract

We study the one-loop effective action of certain classical type IIA string configurations in AdS4 × 3. These configurations are dual to Wilson loops in the \( \mathcal{N}=6 \) U(N)k × U(N)k Chern-Simons theory coupled to matter whose expectation values are known via supersymmetric localization. We compute the one-loop effective actions using two methods: perturbative heat kernel techniques and full ζ-function regularization. We find that the result of the perturbative heat kernel method matches the field theory prediction at the appropriate order while the ζ-function approach seems to lead to a disagreement.

Keywords

AdS-CFT Correspondence Wilson, ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS5 × S 5 : Semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    M. Sakaguchi and K. Yoshida, A Semiclassical string description of Wilson loop with local operators, Nucl. Phys. B 798 (2008) 72 [arXiv:0709.4187] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    C. Kristjansen and Y. Makeenko, More about One-Loop Effective Action of Open Superstring in AdS5 × S 5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E.I. Buchbinder and A.A. Tseytlin, 1/N correction in the D3-brane description of a circular Wilson loop at strong coupling, Phys. Rev. D 89 (2014) 126008 [arXiv:1404.4952] [INSPIRE].ADSGoogle Scholar
  8. [8]
    V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Precision calculation of 1/4-BPS Wilson loops in AdS 5 × S 5, JHEP 02 (2016) 105 [arXiv:1512.00841] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    A. Faraggi, L.A. Pando Zayas, G.A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  10. [10]
    V. Forini, A.A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS5× S 5, JHEP 03 (2017) 003 [arXiv:1702.02164] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    A. Cagnazzo, D. Medina-Rincon and K. Zarembo, String corrections to circular Wilson loop and anomalies, JHEP 02 (2018) 120 [arXiv:1712.07730] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. Klemm, M. Mariño, M. Schiereck and M. Soroush, Aharony-Bergman-Jafferis-Maldacena Wilson loops in the Fermi gas approach, Z. Naturforsch. A 68 (2013) 178 [arXiv:1207.0611] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati and D. Seminara, A matrix model for the latitude Wilson loop in ABJM theory, arXiv:1802.07742 [INSPIRE].
  14. [14]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons Theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson Loops in Superconformal Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual, JHEP 03 (2009) 127 [arXiv:0809.3786] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N = 6 Super Chern-Simons-matter theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    N. Drukker and D. Trancanelli, A Supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].MathSciNetGoogle Scholar
  23. [23]
    V. Cardinali, L. Griguolo, G. Martelloni and D. Seminara, New supersymmetric Wilson loops in ABJ(M) theories, Phys. Lett. B 718 (2012) 615 [arXiv:1209.4032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    M.S. Bianchi, L. Griguolo, M. Leoni, S. Penati and D. Seminara, BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis, JHEP 06 (2014) 123 [arXiv:1402.4128] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Surprises from the resummation of ladders in the ABJ(M) cusp anomalous dimension, JHEP 05 (2016) 180 [arXiv:1603.00541] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati, M. Preti and D. Seminara, Towards the exact Bremsstrahlung function of ABJM theory, JHEP 08 (2017) 022 [arXiv:1705.10780] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    L. Bianchi, L. Griguolo, M. Preti and D. Seminara, Wilson lines as superconformal defects in ABJM theory: a formula for the emitted radiation, JHEP 10 (2017) 050 [arXiv:1706.06590] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    L. Bianchi, M. Preti and E. Vescovi, Exact Bremsstrahlung functions in ABJM theory, JHEP 07 (2018) 060 [arXiv:1802.07726] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D.H. Correa, J. Aguilera-Damia and G.A. Silva, Strings in AdS4 × 3 Wilson loops in \( \mathcal{N}=6 \) super Chern-Simons-matter and bremsstrahlung functions, JHEP 06 (2014) 139 [arXiv:1405.1396] [INSPIRE].ADSMATHGoogle Scholar
  30. [30]
    M. Sakaguchi, H. Shin and K. Yoshida, Semiclassical Analysis of M2-brane in AdS4 × S 7 /Z k, JHEP 12 (2010) 012 [arXiv:1007.3354] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    H. Kim, N. Kim and J. Hun Lee, One-loop corrections to holographic Wilson loop in AdS4 × 3, J. Korean Phys. Soc. 61 (2012) 713 [arXiv:1203.6343] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].
  34. [34]
    J. Aguilera-Damia, A. Faraggi, L. Pando Zayas, V. Rathee and G.A. Silva, Functional Determinants of Radial Operators in AdS2, JHEP 06 (2018) 007 [arXiv:1802.06789] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Aguilera-Damia, A. Faraggi, L.A. Pando Zayas, V. Rathee and G.A. Silva, Zeta-function Regularization of Holographic Wilson Loops, arXiv:1802.03016 [INSPIRE].
  36. [36]
    D. Medina-Rincon, A.A. Tseytlin and K. Zarembo, Precision matching of circular Wilson loops and strings in AdS5 × S 5, JHEP 05 (2018) 199 [arXiv:1804.08925] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    W. Mück, L.A. Pando Zayas and V. Rathee, Spectra of Certain Holographic ABJM Wilson Loops in Higher Rank Representations, JHEP 11 (2016) 113 [arXiv:1609.06930] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    J. Cookmeyer, J.T. Liu and L.A. Pando Zayas, Higher Rank ABJM Wilson Loops from Matrix Models, JHEP 11 (2016) 121 [arXiv:1609.08165] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Instituto de Física de La Plata - CONICET & Departamento de Física, UNLP C.C. 67La PlataArgentina
  2. 2.Departamento de Ciencias Fisicas, Facultad de Ciencias ExactasUniversidad Andres BelloSantiagoChile
  3. 3.Leinweber Center for Theoretical Physics, Randall Laboratory of PhysicsThe University of MichiganAnn ArborU.S.A.
  4. 4.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations