Advertisement

Large-c superconformal torus blocks

  • Konstantin Alkalaev
  • Vladimir Belavin
Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

We study large-c SCFT2 on a torus specializing to one-point superblocks in the \( \mathcal{N} \) = 1 Neveu-Schwarz sector. Considering different contractions of the Neveu-Schwarz superalgebra related to the large central charge limit we explicitly calculate three superblocks, osp(1|2) global, light, and heavy-light superblocks, and show that they are related to each other. We formulate the osp(1|2) superCasimir eigenvalue equations and identify their particular solutions as the global superblocks. It is shown that the resulting differential equations are the Heun equations. We study exponentiated global superblocks arising at large conformal dimensions and demonstrate that in the leading approximation the osp(1|2) superblocks are equal to the non-supersymmetric sl(2) block.

Keywords

Conformal and W Symmetry Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  2. [2]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum Entanglement of Localized Excited States at Finite Temperature, JHEP 01 (2015) 102 [arXiv:1410.2287] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher spin entanglement and \( {\mathcal{W}}_{\mathrm{N}} \) conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].
  5. [5]
    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    K.B. Alkalaev and V.A. Belavin, Classical conformal blocks via AdS/CFT correspondence, JHEP 08 (2015) 049 [arXiv:1504.05943] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3 gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].ADSMATHGoogle Scholar
  9. [9]
    K.B. Alkalaev and V.A. Belavin, Monodromic vs geodesic computation of Virasoro classical conformal blocks, Nucl. Phys. B 904 (2016) 367 [arXiv:1510.06685] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    M. Beccaria, A. Fachechi and G. Macorini, Virasoro vacuum block at next-to-leading order in the heavy-light limit, JHEP 02 (2016) 072 [arXiv:1511.05452] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    A.L. Fitzpatrick and J. Kaplan, Conformal Blocks Beyond the Semi-Classical Limit, JHEP 05 (2016) 075 [arXiv:1512.03052] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    P. Banerjee, S. Datta and R. Sinha, Higher-point conformal blocks and entanglement entropy in heavy states, JHEP 05 (2016) 127 [arXiv:1601.06794] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    K.B. Alkalaev and V.A. Belavin, Holographic interpretation of 1-point toroidal block in the semiclassical limit, JHEP 06 (2016) 183 [arXiv:1603.08440] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  14. [14]
    B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP 10 (2016) 110 [arXiv:1609.00801] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    K.B. Alkalaev, Many-point classical conformal blocks and geodesic networks on the hyperbolic plane, JHEP 12 (2016) 070 [arXiv:1610.06717] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    P. Kraus and A. Maloney, A cardy formula for three-point coefficients or how the black hole got its spots, JHEP 05 (2017) 160 [arXiv:1608.03284] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    O. Hulík, T. Procházka and J. Raeymaekers, Multi-centered AdS 3 solutions from Virasoro conformal blocks, JHEP 03 (2017) 129 [arXiv:1612.03879] [INSPIRE].
  18. [18]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Exact Virasoro Blocks from Wilson Lines and Background-Independent Operators, JHEP 07 (2017) 092 [arXiv:1612.06385] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    P. Kraus, A. Maloney, H. Maxfield, G.S. Ng and J.-q. Wu, Witten Diagrams for Torus Conformal Blocks, JHEP 09 (2017) 149 [arXiv:1706.00047] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    V.A. Belavin and R.V. Geiko, Geodesic description of Heavy-Light Virasoro blocks, JHEP 08 (2017) 125 [arXiv:1705.10950] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    K.B. Alkalaev and V.A. Belavin, Holographic duals of large-c torus conformal blocks, JHEP 10 (2017) 140 [arXiv:1707.09311] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    H. Maxfield, A view of the bulk from the worldline, arXiv:1712.00885 [INSPIRE].
  23. [23]
    Y. Kusuki, New Properties of Large-c Conformal Blocks from Recursion Relation, JHEP 07 (2018) 010 [arXiv:1804.06171] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E.M. Brehm, D. Das and S. Datta, Probing thermality beyond the diagonal, arXiv:1804.07924 [INSPIRE].
  25. [25]
    A. Belavin, V. Belavin, A. Neveu and A. Zamolodchikov, Bootstrap in Supersymmetric Liouville Field Theory. I. NS Sector, Nucl. Phys. B 784 (2007) 202 [hep-th/0703084] [INSPIRE].
  26. [26]
    K.B. Alkalaev and V.A. Belavin, From global to heavy-light: 5-point conformal blocks, JHEP 03 (2016) 184 [arXiv:1512.07627] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    K.B. Alkalaev, R.V. Geiko and V.A. Rappoport, Various semiclassical limits of torus conformal blocks, JHEP 04 (2017) 070 [arXiv:1612.05891] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    M. Cho, S. Collier and X. Yin, Recursive Representations of Arbitrary Virasoro Conformal Blocks, arXiv:1703.09805 [INSPIRE].
  29. [29]
    I.P. Ennes, A.V. Ramallo and J.M. Sanchez de Santos, OSP (1|2) conformal field theory, AIP Conf. Proc. 419 (1998) 138 [hep-th/9708094] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Götz, T. Quella and V. Schomerus, Representation theory of sl(2|1), J. Algebra 312 (2007) 829 [hep-th/0504234] [INSPIRE].CrossRefMATHGoogle Scholar
  31. [31]
    A. Lesniewski, A remark on the Casimir elements of Lie superalgebras and quantized Lie superalgebras, J. Math. Phys. 36 (1995) 1457.ADSCrossRefMATHGoogle Scholar
  32. [32]
    D. Arnaudon and M. Bauer, Scasimir operator, scentre and representations of U q(osp(1|2)), Lett. Math. Phys. 40 (1997) 307 [q-alg/9605020] [INSPIRE].
  33. [33]
    P.K. Ghosh, SuperCalogero model with OSp(2|2) supersymmetry: Is the construction unique?, Nucl. Phys. B 681 (2004) 359 [hep-th/0309183] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    D. Friedan, Z.-a. Qiu and S.H. Shenker, Superconformal Invariance in Two-Dimensions and the Tricritical Ising Model, Phys. Lett. B 151 (1985) 37 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M.A. Bershadsky, V.G. Knizhnik and M.G. Teitelman, Superconformal Symmetry in Two-Dimensions, Phys. Lett. B 151 (1985) 31 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Álvarez-Gaumé and P. Zaugg, Structure constants in the N = 1 superoperator algebra, Annals Phys. 215 (1992) 171 [hep-th/9109050] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Recurrence relations for toric N = 1 superconformal blocks, JHEP 09 (2012) 122 [arXiv:1207.5740] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063 [arXiv:0911.2353] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    M. Piatek, Classical torus conformal block, N = 2 twisted superpotential and the accessory parameter of Lamé equation, JHEP 03 (2014) 124 [arXiv:1309.7672] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    P. Menotti, Torus classical conformal blocks, arXiv:1805.07788 [INSPIRE].
  42. [42]
    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].
  43. [43]
    A.L. Fitzpatrick, J. Kaplan, Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, Covariant Approaches to Superconformal Blocks, JHEP 08 (2014) 129 [arXiv:1402.1167] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with Four Supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].MATHGoogle Scholar
  45. [45]
    M. Cornagliotto, M. Lemos and V. Schomerus, Long Multiplet Bootstrap, JHEP 10 (2017) 119 [arXiv:1702.05101] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    Y. Gobeil, A. Maloney, G.S. Ng and J.-q. Wu, Thermal Conformal Blocks, arXiv:1802.10537 [INSPIRE].
  48. [48]
    D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, arXiv:1805.04405 [INSPIRE].
  49. [49]
    T. Oshima, Fractional Calculus of Weyl Algebra and Fuchsian Differential Equations, Math. Soc. Japan Memoirs 28 (2012) 1.MATHGoogle Scholar
  50. [50]
    A. Litvinov, S. Lukyanov, N. Nekrasov and A. Zamolodchikov, Classical Conformal Blocks and Painleve VI, JHEP 07 (2014) 144 [arXiv:1309.4700] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  51. [51]
    M. Piatek and A.R. Pietrykowski, Solving Heun’s equation using conformal blocks, arXiv:1708.06135 [INSPIRE].
  52. [52]
    M. Lencsés and F. Novaes, Classical Conformal Blocks and Accessory Parameters from Isomonodromic Deformations, JHEP 04 (2018) 096 [arXiv:1709.03476] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    H. Chen, A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Degenerate Operators and the 1/c Expansion: Lorentzian Resummations, High Order Computations and Super-Virasoro Blocks, JHEP 03 (2017) 167 [arXiv:1606.02659] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  54. [54]
    H. Poghosyan, The light asymptotic limit of conformal blocks in \( \mathcal{N} \) = 1 super Liouville field theory, JHEP 09 (2017) 062 [arXiv:1706.07474] [INSPIRE].
  55. [55]
    Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, \( \mathcal{N} \) = 4 superconformal bootstrap of the K3 CFT, JHEP 05 (2017) 126 [arXiv:1511.04065] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    P. Goddard, A. Kent and D.I. Olive, Unitary Representations of the Virasoro and Supervirasoro Algebras, Commun. Math. Phys. 103 (1986) 105 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Elliptic recurrence representation of the N = 1 Neveu-Schwarz blocks, Nucl. Phys. B 798 (2008) 363 [arXiv:0711.1619] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  58. [58]
    M. Nishida and K. Tamaoka, Fermions in Geodesic Witten Diagrams, JHEP 07 (2018) 149 [arXiv:1805.00217] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    D. Friedan, Notes on string theory and two-dimensional conformal field theory, preprint EFI 85-99 (1986) [INSPIRE].
  60. [60]
    M. Dorrzapf, The Definition of Neveu-Schwarz superconformal fields and uncharged superconformal transformations, Rev. Math. Phys. 11 (1999) 137 [hep-th/9712107] [INSPIRE].CrossRefMATHGoogle Scholar
  61. [61]
    H. Bateman and A. Erdelyi, Higher Transcendental Functions, Volume 3, McGraw-Hill (1953).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical InstituteMoscowRussia
  2. 2.Department of General and Applied PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyiRussia
  3. 3.Department of Quantum PhysicsInstitute for Information Transmission ProblemsMoscowRussia
  4. 4.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations