Advertisement

Sharing but not caring: collider phenomenology

  • Nicolás Bernal
  • Chee Sheng Fong
  • Alberto Tonero
Open Access
Regular Article - Experimental Physics
  • 14 Downloads

Abstract

Based on a previous work on scenarios where the Standard Model and dark matter particles share a common asymmetry through effective operators at early time in the Universe and later on decouple from each other (not care), in this work, we study in detail the collider phenomenology of these scenarios. In particular, we use the experimental results from the Large Hadron Collider (LHC) to constrain the viable parameter space. Besides effective operators, we also constrain the parameter space of some representative ultraviolet complete models with experimental results from both the LHC and the Large Electron-Positron Collider. Specifically, we use measurements related to jets + missing transverse energy (MET), di-jets and photon + MET. In the case of ultraviolet models, depending on the assumptions on the couplings and masses of mediators, the derived constraints can become more or less stringent. We consider also the situation where one of the mediators has mass below 100 GeV, in this case we use the ultraviolet model to construct a new effective operator responsible for the sharing of the asymmetry and study its phenomenology.

Keywords

Beyond Standard Model Dark matter Hadron-Hadron scattering (experiments) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  2. [2]
    S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Roulet and G. Gelmini, Cosmions, Cosmic Asymmetry And Underground Detection, Nucl. Phys. B 325 (1989) 733 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak Fermion Number Violation and the Production of Stable Particles in the Early Universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Davoudiasl and R.N. Mohapatra, On Relating the Genesis of Cosmic Baryons and Dark Matter, New J. Phys. 14 (2012) 095011 [arXiv:1203.1247] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    K.M. Zurek, Asymmetric Dark Matter: Theories, Signatures and Constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    S.M. Boucenna and S. Morisi, Theories relating baryon asymmetry and dark matter: A mini review, Front. in Phys. 1 (2014) 33 [arXiv:1310.1904] [INSPIRE].ADSGoogle Scholar
  9. [9]
    N. Bernal, C.S. Fong and N. Fonseca, Sharing but not Caring: Dark Matter and the Baryon Asymmetry of the Universe, JCAP 09 (2016) 005 [arXiv:1605.07188] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Weinberg, Varieties of Baryon and Lepton Nonconservation, Phys. Rev. D 22 (1980) 1694 [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Wilczek and A. Zee, Operator Analysis of Nucleon Decay, Phys. Rev. Lett. 43 (1979) 1571 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L.F. Abbott and M.B. Wise, The Effective Hamiltonian for Nucleon Decay, Phys. Rev. D 22 (1980) 2208 [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Alonso, H.-M. Chang, E.E. Jenkins, A.V. Manohar and B. Shotwell, Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett. B 734 (2014) 302 [arXiv:1405.0486] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the Validity of the Effective Field Theory Approach to SM Precision Tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Berlin, T. Lin and L.-T. Wang, Mono-Higgs Detection of Dark Matter at the LHC, JHEP 06 (2014) 078 [arXiv:1402.7074] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05 (2015) 009 [arXiv:1502.04701] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  19. [19]
    ATLAS collaboration, Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Eur. Phys. J. C 77 (2017) 765 [arXiv:1707.03263] [INSPIRE].
  20. [20]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  21. [21]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  24. [24]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    E. Maguire, L. Heinrich and G. Watt, HEPData: a repository for high energy physics data, J. Phys. Conf. Ser. 898 (2017) 102006 [arXiv:1704.05473] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    ATLAS collaboration, Measurements of the W production cross sections in association with jets with the ATLAS detector, Eur. Phys. J. C 75 (2015) 82 [arXiv:1409.8639] [INSPIRE].
  27. [27]
    A. de Gouvêa and A. Kobach, Global Constraints on a Heavy Neutrino, Phys. Rev. D 93 (2016) 033005 [arXiv:1511.00683] [INSPIRE].ADSGoogle Scholar
  28. [28]
    CMS collaboration, Search for narrow resonances decaying to dijets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 071801 [arXiv:1512.01224] [INSPIRE].
  29. [29]
    DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV to 209-GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].
  30. [30]
    L3 collaboration, P. Achard et al., Search for heavy neutral and charged leptons in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 75 [hep-ex/0107015] [INSPIRE].
  31. [31]
    CMS collaboration, Search for anomalous production of events with three or more leptons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 90 (2014) 032006 [arXiv:1404.5801] [INSPIRE].
  32. [32]
    ATLAS collaboration, Search for new phenomena in events with three or more charged leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 138 [arXiv:1411.2921] [INSPIRE].
  33. [33]
    ATLAS collaboration, Measurement of total and differential W + W production cross sections in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings, JHEP 09 (2016) 029 [arXiv:1603.01702] [INSPIRE].
  34. [34]
    DELPHI collaboration, J. Abdallah et al., Search for one large extra dimension with the DELPHI detector at LEP, Eur. Phys. J. C 60 (2009) 17 [arXiv:0901.4486] [INSPIRE].
  35. [35]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F. Perez and B.E. Granger, IPython: A System for Interactive Scientific Computing, Comput. Sci. Eng. 9 (2007) 21 [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    J.D. Hunter, Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9 (2007) 90 [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    E. Jones, T. Oliphant and P. Peterson, SciPy: Open source scientific tools for Python, (2001).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Centro de InvestigacionesUniversidad Antonio NariñoBogotáColombia
  2. 2.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.Departamento de Física, Pontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  4. 4.UNIFAL-MGPoços de CaldasBrazil
  5. 5.Ottawa-Carleton, Institute for PhysicsCarleton UniversityOttawaCanada

Personalised recommendations