Advertisement

Equations of motion from Cederwall’s pure spinor superspace actions

  • Nathan Berkovits
  • Max Guillen
Open Access
Regular Article - Theoretical Physics
  • 40 Downloads

Abstract

Using non-minimal pure spinor superspace, Cederwall has constructed BRST-invariant actions for D = 10 super-Born-Infeld and D = 11 supergravity which are quartic in the superfields. But since the superfields have explicit dependence on the non-minimal pure spinor variables, it is non-trivial to show these actions correctly describe super-Born-Infeld and supergravity. In this paper, we expand solutions to the equations of motion from Cederwall’s actions to leading order around the linearized solutions and show that they correctly describe the interactions of D = 10 super-Born-Infeld and D = 11 supergravity.

Keywords

M-Theory Supergravity Models Superstrings and Heterotic Strings Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B 258 (1991) 141 [Addendum ibid. B 259 (1991) 511] [INSPIRE].
  2. [2]
    N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09 (2001) 016 [hep-th/0105050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    N. Berkovits, Towards covariant quantization of the supermembrane, JHEP 09 (2002) 051 [hep-th/0201151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP 10 (2013) 217 [arXiv:1308.6567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Cederwall, D = 11 supergravity with manifest supersymmetry, Mod. Phys. Lett. A 25 (2010) 3201 [arXiv:1001.0112] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Cederwall, Pure spinor superfieldsan overview, Springer Proc. Phys. 153 (2014) 61 [arXiv:1307.1762] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    M. Cederwall and A. Karlsson, Pure spinor superfields and Born-Infeld theory, JHEP 11 (2011) 134 [arXiv:1109.0809] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    C.-M. Chang, Y.-H. Lin, Y. Wang and X. Yin, Deformations with Maximal Supersymmetries Part 2: Off-shell Formulation, JHEP 04 (2016) 171 [arXiv:1403.0709] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, D = 10 superYang-Mills at O(α ′2), JHEP 07 (2001) 042 [hep-th/0104236] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Berkovits, ICTP lectures on covariant quantization of the superstring, ICTP Lect. Notes Ser. 13 (2003) 57 [hep-th/0209059] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  11. [11]
    L. Brink and J.H. Schwarz, Quantum Superspace, Phys. Lett. B 100 (1981) 310 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    E. Bergshoeff, M. Rakowski and E. Sezgin, Higher derivative super Yang-Mills theories, Phys. Lett. B 185 (1987) 371 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    S.J. Gates Jr. and S. Vashakidze, On D = 10, N = 1 Supersymmetry, Superspace Geometry and Superstring Effects, Nucl. Phys. B 291 (1987) 172 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    N. Berkovits and V. Pershin, Supersymmetric Born-Infeld from the pure spinor formalism of the open superstring, JHEP 01 (2003) 023 [hep-th/0205154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M. Guillen, Equivalence of the 11D pure spinor and Brink-Schwarz-like superparticle cohomologies, Phys. Rev. D 97 (2018) 066002 [arXiv:1705.06316] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L. Brink and P.S. Howe, Eleven-Dimensional Supergravity on the Mass-Shell in Superspace, Phys. Lett. B 91 (1980) 384 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Cederwall and A. Karlsson, Loop amplitudes in maximal supergravity with manifest supersymmetry, JHEP 03 (2013) 114 [arXiv:1212.5175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Cederwall, Towards a manifestly supersymmetric action for 11-dimensional supergravity, JHEP 01 (2010) 117 [arXiv:0912.1814] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.ICTP South American Institute for Fundamental Reserch, Instituto de Física TeóricaUNESP — Universidade Estadual PaulistaSão PauloBrazil

Personalised recommendations