Advertisement

A note on entanglement edge modes in Chern Simons theory

  • Gabriel Wong
Open Access
Regular Article - Theoretical Physics

Abstract

We elaborate on the extended Hilbert space factorization of Chern Simons theory and show how this arises naturally from a proper regularization of the entangling surface in the Euclidean path integral. The regularization amounts to stretching the entangling surface into a co-dimension one surface which hosts edge modes of the Chern Simons theory when quantized on a spatial subregion. The factorized state is a regularized Ishibashi state and reproduces the well known topological entanglement entropies. We illustrate how the same factorization arises from the gluing of two spatial subregions via the entangling product defined by Donnelly and Freidel [1].

Keywords

Chern-Simons Theories Conformal Field Theory Topological Field Theories Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    B. Swingle and M. Van Raamsdonk, Universality of gravity from entanglement, arXiv:1405.2933 [INSPIRE].
  4. [4]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. Li and F. Haldane, Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states, Phys. Rev. Lett. 101 (2008) 010504 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    W. Donnelly, Entanglement entropy and non-Abelian gauge symmetry, Class. Quant. Grav. 31 (2014) 214003 [arXiv:1406.7304] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D 85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].ADSGoogle Scholar
  8. [8]
    W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett. 114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev. D 94 (2016) 104053 [arXiv:1506.05792] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    B. Swingle and T. Senthil, A geometric proof of the equality between entanglement and edge spectra, Phys. Rev. B 86 (2012) 045117 [arXiv:1109.1283] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    X.-L. Qi, H. Katsura and A.W.W. Ludwig, General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states, Phys. Rev. Lett. 108 (2012) 196402 [arXiv:1103.5437].ADSCrossRefGoogle Scholar
  12. [12]
    D. Das and S. Datta, Universal features of left-right entanglement entropy, Phys. Rev. Lett. 115 (2015) 131602 [arXiv:1504.02475] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    X. Wen, S. Matsuura and S. Ryu, Edge theory approach to topological entanglement entropy, mutual information and entanglement negativity in Chern-Simons theories, Phys. Rev. B 93 (2016) 245140 [arXiv:1603.08534] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    W.G. Unruh and N. Weiss, Acceleration radiation in interacting field theories, Phys. Rev. D 29 (1984) 1656 [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    J.R. Fliss et al., Interface contributions to topological entanglement in Abelian Chern-Simons theory, JHEP 09 (2017) 056 [arXiv:1705.09611] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech. 1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    W. Donnelly and G. Wong, Entanglement branes in a two-dimensional string theory, JHEP 09 (2017) 097 [arXiv:1610.01719] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Jacobson, Black holes and Hawking radiation in spacetime and its analogues, Lect. Notes Phys. 870 (2013) 1 [arXiv:1212.6821] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    T. Jacobson, Black hole thermodynamics and the space-time discontinuum, in Osgood Hill conference: conceptual problems of quantum gravity, Andover, MA, U.S.A., 15–19 May 1988, pg. 597 [INSPIRE].
  21. [21]
    N. Ishibashi, The boundary and crosscap states in conformal field theories, Mod. Phys. Lett. A 4 (1989) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    M. Geiller, Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, Nucl. Phys. B 924 (2017) 312 [arXiv:1703.04748] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P.H. Ginsparg, Applied conformal field theory, in Les Houches Summer School in Theoretical Physics: fields, strings, critical phenomena, Les Houches, France, 28 June–5 August 1988, pg. 1 [hep-th/9108028] [INSPIRE].
  25. [25]
    A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy radiated by a quark, JHEP 05 (2014) 025 [arXiv:1312.5682] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    E. Witten, Chern-Simons gauge theory as a string theory, Prog. Math. 133 (1995) 637 [hep-th/9207094] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  28. [28]
    R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of VirginiaCharlottesvilleU.S.A.
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations