Field redefinitions and Kähler potential in string theory at 1-loop

  • Michael HaackEmail author
  • Jin U Kang
Open Access
Regular Article - Theoretical Physics


Field redefinitions at string 1-loop order are often required by supersymmetry, for instance in order to make the Kähler structure of the scalar kinetic terms manifest. We derive the general structure of the field redefinitions and the Kähler potential at string 1-loop order in a certain class of string theory models (4-dimensional toroidal type IIB orientifolds with \( \mathcal{N} \) = 1 supersymmetry) and for a certain subsector of fields (untwisted Kähler moduli and the 4-dimensional dilaton). To do so we make use of supersymmetry, perturbative axionic shift symmetries and a particular ansatz for the form of the 1-loop corrections to the metric on the moduli space. Our results also show which terms in the low-energy effective action have to be calculated via concrete string amplitudes in order to fix the values of the coefficients (in the field redefinitions and the Kähler potential) that are left undetermined by our general analysis based on (super)symmetry.


Superstrings and Heterotic Strings Supersymmetric Effective Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE].
  3. [3]
    I. Antoniadis, C. Bachas, C. Fabre, H. Partouche and T.R. Taylor, Aspects of type I-type II-heterotic triality in four-dimensions, Nucl. Phys. B 489 (1997) 160 [hep-th/9608012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux induced SUSY breaking soft terms, Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Jockers and J. Louis, The Effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, The D5-brane effective action and superpotential in N = 1 compactifications, Nucl. Phys. B 816 (2009) 139 [arXiv:0811.2996] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Berasaluce-Gonzalez, P.G. Camara, F. Marchesano, D. Regalado and A.M. Uranga, Non-Abelian discrete gauge symmetries in 4d string models, JHEP 09 (2012) 059 [arXiv:1206.2383] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    I. Antoniadis, C. Bachas and E. Dudas, Gauge couplings in four-dimensional type-I string orbifolds, Nucl. Phys. B 560 (1999) 93 [hep-th/9906039] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    J.P. Conlon, Gauge Threshold Corrections for Local String Models, JHEP 04 (2009) 059 [arXiv:0901.4350] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J.P. Conlon and E. Palti, Gauge Threshold Corrections for Local Orientifolds, JHEP 09 (2009) 019 [arXiv:0906.1920] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    P.G. Camara, C. Condeescu and E. Dudas, Holomorphic variables in magnetized brane models with continuous Wilson lines, JHEP 04 (2010) 029 [arXiv:0912.3369] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    F. Carta, F. Marchesano, W. Staessens and G. Zoccarato, Open string multi-branched and Kähler potentials, JHEP 09 (2016) 062 [arXiv:1606.00508] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    I. Antoniadis, R. Minasian, S. Theisen and P. Vanhove, String loop corrections to the universal hypermultiplet, Class. Quant. Grav. 20 (2003) 5079 [hep-th/0307268] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    T.W. Grimm, R. Savelli and M. Weissenbacher, On α corrections in N = 1 F-theory compactifications, Phys. Lett. B 725 (2013) 431 [arXiv:1303.3317] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    T.W. Grimm, J. Keitel, R. Savelli and M. Weissenbacher, From M-theory higher curvature terms to α corrections in F-theory, Nucl. Phys. B 903 (2016) 325 [arXiv:1312.1376] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J.P. Derendinger, S. Ferrara, C. Kounnas and F. Zwirner, On loop corrections to string effective field theories: Field dependent gauge couplings and σ-model anomalies, Nucl. Phys. B 372 (1992) 145 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. von Gersdorff and A. Hebecker, Kähler corrections for the volume modulus of flux compactifications, Phys. Lett. B 624 (2005) 270 [hep-th/0507131] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Berg, M. Haack and B. Körs, On volume stabilization by quantum corrections, Phys. Rev. Lett. 96 (2006) 021601 [hep-th/0508171] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Cicoli, J.P. Conlon and F. Quevedo, General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    I. Antoniadis, Y. Chen and G.K. Leontaris, Perturbative moduli stabilisation in type IIB/F-theory framework, arXiv:1803.08941 [INSPIRE].
  24. [24]
    D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2015) [arXiv:1404.2601] [INSPIRE].
  25. [25]
    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre Inflation: Observable Gravity Waves from IIB String Compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Kachru, R. Kallosh, A.D. Linde, J.M. Maldacena, L.P. McAllister and S.P. Trivedi, Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    J.P. Conlon and F.G. Pedro, Moduli Redefinitions and Moduli Stabilisation, JHEP 06 (2010) 082 [arXiv:1003.0388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M. Berg, M. Haack, J.U. Kang and S. Sjörs, Towards the one-loop Kähler metric of Calabi-Yau orientifolds, JHEP 12 (2014) 077 [arXiv:1407.0027] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    G. Aldazabal, A. Font, L.E. Ibáñez and G. Violero, D = 4, N = 1, type IIB orientifolds, Nucl. Phys. B 536 (1998) 29 [hep-th/9804026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer (2013) [INSPIRE].
  32. [32]
    I. Antoniadis, R. Minasian and P. Vanhove, Noncompact Calabi-Yau manifolds and localized gravity, Nucl. Phys. B 648 (2003) 69 [hep-th/0209030] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    K. Förger, B.A. Ovrut, S.J. Theisen and D. Waldram, Higher derivative gravity in string theory, Phys. Lett. B 388 (1996) 512 [hep-th/9605145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Hashimoto and I.R. Klebanov, Scattering of strings from D-branes, Nucl. Phys. Proc. Suppl. 55 (1997) 118 [hep-th/9611214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M.B. Green and A. Rudra, Type I/heterotic duality and M-theory amplitudes, JHEP 12 (2016) 060 [arXiv:1604.00324] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R 4 couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    J.A. Minahan, One Loop Amplitudes on Orbifolds and the Renormalization of Coupling Constants, Nucl. Phys. B 298 (1988) 36 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    E. Kohlprath, Induced gravity in Z(N ) orientifold models, Nucl. Phys. B 697 (2004) 243 [hep-th/0311251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    F.T.J. Epple, Induced gravity on intersecting branes, JHEP 09 (2004) 021 [hep-th/0408105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    M. Haack and J.U. Kang, One-loop Einstein-Hilbert term in minimally supersymmetric type IIB orientifolds, JHEP 02 (2016) 160 [arXiv:1511.03957] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    M. Berg, M. Haack and J.U. Kang, One-Loop Kähler Metric of D-branes at Angles, JHEP 11 (2012) 091 [arXiv:1112.5156] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    E. Witten, Dimensional Reduction of Superstring Models, Phys. Lett. B 155 (1985) 151 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    C.P. Burgess, A. Font and F. Quevedo, Low-Energy Effective Action for the Superstring, Nucl. Phys. B 272 (1986) 661 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    M. Haack and J.U. Kang, Towards the 1-loop effective action of type IIB orientifolds, PoS(CORFU2016)099 [INSPIRE].
  46. [46]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press (2012).Google Scholar
  47. [47]
    M. Haack, R. Kallosh, A. Krause, A.D. Linde, D. Lüst and M. Zagermann, Update of D3/D7-Brane Inflation on K3 × T 2/ℤ2, Nucl. Phys. B 806 (2009) 103 [arXiv:0804.3961] [INSPIRE].
  48. [48]
    S.K. Blau, M. Clements, S. Della Pietra, S. Carlip and V. Della Pietra, The String Amplitude on Surfaces With Boundaries and Crosscaps, Nucl. Phys. B 301 (1988) 285 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M. Bianchi and A. Sagnotti, The Partition Function of the SO(8192) Bosonic String, Phys. Lett. B 211 (1988) 407 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    J.P. Rodrigues and A. van Tonder, Spin Structures for Riemann Surfaces With Boundaries and Crosscaps, Phys. Lett. B 217 (1989) 85 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Bianchi and A. Sagnotti, Open Strings and the Relative Modular Group, Phys. Lett. B 231 (1989) 389 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    I. Antoniadis and T.R. Taylor, Topological masses from broken supersymmetry, Nucl. Phys. B 695 (2004) 103 [hep-th/0403293] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    I. Antoniadis, K.S. Narain and T.R. Taylor, Open string topological amplitudes and gaugino masses, Nucl. Phys. B 729 (2005) 235 [hep-th/0507244] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Arnold Sommerfeld Center for Theoretical PhysicsLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  3. 3.Department of PhysicsKim Il Sung UniversityPyongyangKorea

Personalised recommendations