Advertisement

Strong-weak Chern-Simons-matter dualities from a lattice construction

  • Jing-Yuan Chen
  • Max Zimet
Open Access
Regular Article - Theoretical Physics

Abstract

We provide a lattice demonstration of (2+1)-dimensional field theory dualities relating free Dirac or Majorana fermions to strongly-interacting bosonic Chern-Simons-matter theories. Specifically, we prove the recent conjecture that U(N ) level-1 with Nf gauged complex Wilson-Fisher scalars (where 1 ≤ NfN ) is dual to Nf Dirac fermions, as well as the analogous conjecture relating SO(N ) theories with real Wilson-Fisher scalars to Majorana fermions for 1 ≤ NfN − 2. Furthermore, we discover new dualities that allow us to explain the interesting phase structure of the SO(N ) theories with N − 1 and N scalars, for all N ≥ 2.

Keywords

Duality in Gauge Field Theories Chern-Simons Theories Lattice Quantum Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.M. Polyakov, Fermi-Bose Transmutations Induced by Gauge Fields, Mod. Phys. Lett. A 3 (1988) 325 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  3. [3]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D.T. Son, Is the Composite Fermion a Dirac Particle?, Phys. Rev. X 5 (2015) 031027 [arXiv:1502.03446] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    C. Wang and T. Senthil, Dual Dirac Liquid on the Surface of the Electron Topological Insulator, Phys. Rev. X 5 (2015) 041031 [arXiv:1505.05141] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    M.A. Metlitski and A. Vishwanath, Particle-vortex duality of two-dimensional Dirac fermion from electric-magnetic duality of three-dimensional topological insulators, Phys. Rev. B 93 (2016) 245151 [arXiv:1505.05142] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P.-S. Hsin and N. Seiberg, Level/rank Duality and Chern-Simons-Matter Theories, JHEP 09 (2016) 095 [arXiv:1607.07457] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M.A. Metlitski, A. Vishwanath and C. Xu, Duality and bosonization of (2 + 1)-dimensional Majorana fermions, Phys. Rev. B 95 (2017) 205137 [arXiv:1611.05049] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO and USp gauge groups, JHEP 02 (2017) 072 [arXiv:1611.07874] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].
  15. [15]
    C. Xu and Y.-Z. You, Self-dual Quantum Electrodynamics as Boundary State of the three dimensional Bosonic Topological Insulator, Phys. Rev. B 92 (2015) 220416 [arXiv:1510.06032] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP 04 (2017) 135 [arXiv:1702.07035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Giombi, Testing the Boson/Fermion Duality on the Three-Sphere, arXiv:1707.06604 [INSPIRE].
  18. [18]
    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4 , walls and dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Gomis, Z. Komargodski and N. Seiberg, Phases Of Adjoint QCD 3 And Dualities, SciPost Phys. 5 (2018) 007 [arXiv:1710.03258] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    C. Cordova, P.-S. Hsin and N. Seiberg, Global Symmetries, Counterterms and Duality in Chern-Simons Matter Theories with Orthogonal Gauge Groups, SciPost Phys. 4 (2018) 021 [arXiv:1711.10008] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    C. Córdova, P.-S. Hsin and N. Seiberg, Time-Reversal Symmetry, Anomalies and Dualities in (2 + 1)d, SciPost Phys. 5 (2018) 006 [arXiv:1712.08639] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    A. Karch, B. Robinson and D. Tong, More Abelian Dualities in 2 + 1 Dimensions, JHEP 01 (2017) 017 [arXiv:1609.04012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    K. Jensen and A. Karch, Bosonizing three-dimensional quiver gauge theories, JHEP 11 (2017) 018 [arXiv:1709.01083] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    F. Benini, Three-dimensional dualities with bosons and fermions, JHEP 02 (2018) 068 [arXiv:1712.00020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    K. Jensen, A master bosonization duality, JHEP 01 (2018) 031 [arXiv:1712.04933] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    K. Aitken, A. Baumgartner, A. Karch and B. Robinson, 3d Abelian Dualities with Boundaries, JHEP 03 (2018) 053 [arXiv:1712.02801] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    K. Aitken, A. Karch and B. Robinson, Master 3d Bosonization Duality with Boundaries, JHEP 05 (2018) 124 [arXiv:1803.08507] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP 05 (2017) 159 [arXiv:1606.01912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    C. Wang, A. Nahum, M.A. Metlitski, C. Xu and T. Senthil, Deconfined quantum critical points: symmetries and dualities, Phys. Rev. X 7 (2017) 031051 [arXiv:1703.02426] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    Y.Q. Qin et al., Duality between the deconfined quantum-critical point and the bosonic topological transition, Phys. Rev. X 7 (2017) 031052 [arXiv:1705.10670] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    L. Janssen and Y.-C. He, Critical behavior of the QED 3 -Gross-Neveu model: Duality and deconfined criticality, Phys. Rev. B 96 (2017) 205113 [arXiv:1708.02256] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y.-Z. You, Y.-C. He, A. Vishwanath and C. Xu, From Bosonic Topological Transition to Symmetric Fermion Mass Generation, Phys. Rev. B 97 (2018) 125112 [arXiv:1711.00863] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Goldman, M. Mulligan, S. Raghu, G. Torroba and M. Zimet, Two-dimensional conductors with interactions and disorder from particle-vortex duality, Phys. Rev. B 96 (2017) 245140 [arXiv:1709.07005] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Hui, M. Mulligan and E.-A. Kim, Non-Abelian Fermionization and Fractional Quantum Hall Transitions, Phys. Rev. B 97 (2018) 085112 [arXiv:1710.11137] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Hui, E.-A. Kim and M. Mulligan, Superuniversality and non-abelian bosonization in 2 + 1 dimensions, arXiv:1712.04942 [INSPIRE].
  36. [36]
    D.F. Mross, J. Alicea and O.I. Motrunich, Explicit derivation of duality between a free Dirac cone and quantum electrodynamics in (2 + 1) dimensions, Phys. Rev. Lett. 117 (2016) 016802 [arXiv:1510.08455] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D.F. Mross, J. Alicea and O.I. Motrunich, Symmetry and duality in bosonization of two-dimensional Dirac fermions, Phys. Rev. X 7 (2017) 041016 [arXiv:1705.01106] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037 [arXiv:1305.7235] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Mirror symmetry and the half-filled Landau level, Phys. Rev. B 92 (2015) 235105 [arXiv:1506.01376] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Gur-Ari and R. Yacoby, Three Dimensional Bosonization From Supersymmetry, JHEP 11 (2015) 013 [arXiv:1507.04378] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Bosonization and Mirror Symmetry, Phys. Rev. D 94 (2016) 085009 [arXiv:1608.05077] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett. 118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    K. Jensen and A. Karch, Embedding three-dimensional bosonization dualities into string theory, JHEP 12 (2017) 031 [arXiv:1709.07872] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    H. Goldman and E. Fradkin, Loop Models, Modular Invariance and Three Dimensional Bosonization, Phys. Rev. B 97 (2018) 195112 [arXiv:1801.04936] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.-Y. Chen, J.H. Son, C. Wang and S. Raghu, Exact Boson-Fermion Duality on a 3D Euclidean Lattice, Phys. Rev. Lett. 120 (2018) 016602 [arXiv:1705.05841] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD 3, JHEP 01 (2018) 109 [arXiv:1706.08755] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    C.-M. Jian, Z. Bi and Y.-Z. You, Lattice Construction of Duality with Non-Abelian Gauge Fields in 2+1D, arXiv:1806.04155 [INSPIRE].
  48. [48]
    K.G. Wilson, Confinement of Quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  49. [49]
    K.G. Wilson in New Phenomena in subnuclear physics, A. Zichichi eds., Plenum Press, New York U.S.A. (1977).Google Scholar
  50. [50]
    M.F.L. Golterman, K. Jansen and D.B. Kaplan, Chern-Simons currents and chiral fermions on the lattice, Phys. Lett. B 301 (1993) 219 [hep-lat/9209003] [INSPIRE].
  51. [51]
    A.M. Polyakov, Compact Gauge Fields and the Infrared Catastrophe, Phys. Lett. B 59 (1975) 82 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A.M. Polyakov, Quark Confinement and Topology of Gauge Groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C. Itzykson and J.B. Zuber, The Planar Approximation. 2., J. Math. Phys. 21 (1980) 411 [INSPIRE].
  54. [54]
    A.B. Balantekin, Character expansions, Itzykson-Zuber integrals and the QCD partition function, Phys. Rev. D 62 (2000) 085017 [hep-th/0007161] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    P. Zinn-Justin and J.B. Zuber, On some integrals over the U(N ) unitary group and their large N limit, J. Phys. A 36 (2003) 3173 [math-ph/0209019] [INSPIRE].
  56. [56]
    M. Taylor, Lectures on Lie Groups, http://www.unc.edu/math/Faculty/met/lie.html (2002).
  57. [57]
    J. Gallier, CIS 610, Spring 2018, Some Course Notes and Slides, http://www.cis.upenn.edu/ cis610/cis610-notes-18.html (2018.)
  58. [58]
    J. Milnor, Curvatures of Left Invariant Metrics on Lie Groups, Adv. Math. 21 (1976) 293 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    N. Seiberg and E. Witten, Gapped Boundary Phases of Topological Insulators via Weak Coupling, PTEP 2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
  60. [60]
    R.C. Brower, E.S. Weinberg, G.T. Fleming, A.D. Gasbarro, T.G. Raben and C.-I. Tan, Lattice Dirac Fermions on a Simplicial Riemannian Manifold, Phys. Rev. D 95 (2017) 114510 [arXiv:1610.08587] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A.S. Schwarz, The Partition Function of Degenerate Quadratic Functional and Ray-Singer Invariants, Lett. Math. Phys. 2 (1978) 247 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    E. Witten, On S-duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    E. Witten, Fermion Path Integrals And Topological Phases, Rev. Mod. Phys. 88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys. 129 (1990) 393 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 1. Proof by Homotopy Theory, Nucl. Phys. B 185 (1981) 20 [Erratum ibid. B 195 (1982) 541] [INSPIRE].
  67. [67]
    M.E. Peskin, Mandelstam-’t Hooft Duality in Abelian Lattice Models, Annals Phys. 113 (1978) 122 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    C. Dasgupta and B.I. Halperin, Phase Transition in a Lattice Model of Superconductivity, Phys. Rev. Lett. 47 (1981) 1556 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations