Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series

  • Johannes Broedel
  • Claude Duhr
  • Falko Dulat
  • Brenda Penante
  • Lorenzo Tancredi
Open Access
Regular Article - Theoretical Physics


We present a generalization of the symbol calculus from ordinary multiple polylogarithms to their elliptic counterparts. Our formalism is based on a special case of a coaction on large classes of periods that is applied in particular to elliptic polylogarithms and iterated integrals of modular forms. We illustrate how to use our formalism to derive relations among elliptic polylogarithms, in complete analogy with the non-elliptic case. We then analyze the symbol alphabet of elliptic polylogarithms evaluated at rational points, and we observe that it is given by Eisenstein series for a certain congruence subgroup. We apply our formalism to hypergeometric functions that can be expressed in terms of elliptic polylogarithms and show that they can equally be written in terms of iterated integrals of Eisenstein series. Finally, we present the symbol of the equal-mass sunrise integral in two space-time dimensions. The symbol alphabet involves Eisenstein series of level six and weight three, and we can easily integrate the symbol in terms of iterated integrals of Eisenstein series.


NLO Computations QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995) 197.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  4. [4]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  6. [6]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE].
  8. [8]
    K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces \( {\mathfrak{M}}_{0,n} \), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].
  10. [10]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].
  12. [12]
    V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].
  13. [13]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math/0208144] [INSPIRE].
  15. [15]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].
  16. [16]
    F. Brown, On the decomposition of motivic multiple zeta values, in Galois-Teichmüller theory and arithmetic geometry, Math. Soc. Japan, Adv. Stud. Pure Math. 68 (2012) 31 [arXiv:1102.1310] [INSPIRE].
  17. [17]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].
  22. [22]
    J.M. Drummond, G. Papathanasiou and M. Spradlin, A Symbol of Uniqueness: The Cluster Bootstrap for the 3-Loop MHV Heptagon, JHEP 03 (2015) 072 [arXiv:1412.3763] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP 01 (2016) 053 [arXiv:1509.08127] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett. 117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP 02 (2017) 137 [arXiv:1612.08976] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q{\overline{q}}^{\prime}\to {V}_1{V}_2\to\ 4 \) leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].
  27. [27]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions to the inclusive Higgs cross-section at N 3 LO, JHEP 12 (2013) 088 [arXiv:1311.1425] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Duhr and T. Gehrmann, The two-loop soft current in dimensional regularization, Phys. Lett. B 727 (2013) 452 [arXiv:1309.4393] [INSPIRE].
  30. [30]
    C. Anastasiou et al., Higgs Boson GluonFfusion Production Beyond Threshold in N 3 LO QCD, JHEP 03 (2015) 091 [arXiv:1411.3584] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].
  32. [32]
    C. Duhr, T. Gehrmann and M. Jaquier, Two-loop splitting amplitudes and the single-real contribution to inclusive Higgs production at N 3 LO, JHEP 02 (2015) 077 [arXiv:1411.3587] [INSPIRE].
  33. [33]
    F. Dulat and B. Mistlberger, Real-Virtual-Virtual contributions to the inclusive Higgs cross section at N3LO, arXiv:1411.3586 [INSPIRE].
  34. [34]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, F. Herzog and B. Mistlberger, Soft expansion of double-real-virtual corrections to Higgs production at N 3 LO, JHEP 08 (2015) 051 [arXiv:1505.04110] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Sabry, Fourth order spectral functions for the electron propagator, Nucl. Phys. 33 (1962) 401.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    U. Aglietti, R. Bonciani, L. Grassi and E. Remiddi, The Two loop crossed ladder vertex diagram with two massive exchanges, Nucl. Phys. B 789 (2008) 45 [arXiv:0705.2616] [INSPIRE].
  38. [38]
    F. Brown and O. Schnetz, Modular forms in Quantum Field Theory, Commun. Num. Theor Phys. 07 (2013) 293 [arXiv:1304.5342] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Two-loop planar master integrals for Higgs→ 3 partons with full heavy-quark mass dependence, JHEP 12 (2016) 096 [arXiv:1609.06685] [INSPIRE].
  41. [41]
    A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms, JHEP 06 (2017) 127 [arXiv:1701.05905] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Primo and L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph, Nucl. Phys. B 921 (2017) 316 [arXiv:1704.05465] [INSPIRE].
  43. [43]
    J. Ablinger et al., Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams, J. Math. Phys. 59 (2018) 062305 [arXiv:1706.01299] [INSPIRE].
  44. [44]
    L.-B. Chen, Y. Liang and C.-F. Qiao, NNLO QCD corrections to γ + η c(η b) exclusive production in electron-positron collision, JHEP 01 (2018) 091 [arXiv:1710.07865] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel and M. Wilhelm, Elliptic Double-Box Integrals: Massless Scattering Amplitudes beyond Polylogarithms, Phys. Rev. Lett. 120 (2018) 121603 [arXiv:1712.02785] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L.-B. Chen, J. Jiang and C.-F. Qiao, Two-Loop integrals for CP-even heavy quarkonium production and decays: Elliptic Sectors, JHEP 04 (2018) 080 [arXiv:1712.03516] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP 05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
  48. [48]
    B. Mistlberger, Higgs boson production at hadron colliders at N 3 LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].
  49. [49]
    S. Bloch, M. Kerr and P. Vanhove, Local mirror symmetry and the sunset Feynman integral, Adv. Theor. Math. Phys. 21 (2017) 1373 [arXiv:1601.08181] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    E. Remiddi and L. Tancredi, Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph, Nucl. Phys. B 880 (2014) 343 [arXiv:1311.3342] [INSPIRE].
  51. [51]
    S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys. B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].
  52. [52]
    S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, J. Number Theor. 148 (2015) 328 [arXiv:1309.5865] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph with arbitrary masses, J. Math. Phys. 54 (2013) 052303 [arXiv:1302.7004] [INSPIRE].
  54. [54]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys. 55 (2014) 102301 [arXiv:1405.5640] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, J. Math. Phys. 56 (2015) 072303 [arXiv:1504.03255] [INSPIRE].
  56. [56]
    L. Adams, C. Bogner and S. Weinzierl, The iterated structure of the all-order result for the two-loop sunrise integral, J. Math. Phys. 57 (2016) 032304 [arXiv:1512.05630] [INSPIRE].
  57. [57]
    E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys. B 907 (2016) 400 [arXiv:1602.01481] [INSPIRE].
  58. [58]
    L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms, J. Math. Phys. 57 (2016) 122302 [arXiv:1607.01571] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral, Phys. Rev. D 97 (2018) 116009 [arXiv:1712.07095] [INSPIRE].
  60. [60]
    D.J. Broadhurst, The Master Two Loop Diagram With Masses, Z. Phys. C 47 (1990) 115 [INSPIRE].
  61. [61]
    S. Bauberger, F.A. Berends, M. Böhm and M. Buza, Analytical and numerical methods for massive two loop selfenergy diagrams, Nucl. Phys. B 434 (1995) 383 [hep-ph/9409388] [INSPIRE].
  62. [62]
    S. Bauberger and M. Böhm, Simple one-dimensional integral representations for two loop selfenergies: The Master diagram, Nucl. Phys. B 445 (1995) 25 [hep-ph/9501201] [INSPIRE].
  63. [63]
    B.A. Kniehl, A.V. Kotikov, A. Onishchenko and O. Veretin, Two-loop sunset diagrams with three massive lines, Nucl. Phys. B 738 (2006) 306 [hep-ph/0510235] [INSPIRE].
  64. [64]
    E. Remiddi and L. Tancredi, An Elliptic Generalization of Multiple Polylogarithms, Nucl. Phys. B 925 (2017) 212 [arXiv:1709.03622] [INSPIRE].
  65. [65]
    L. Adams and S. Weinzierl, Feynman integrals and iterated integrals of modular forms, Commun. Num. Theor. Phys. 12 (2018) 193 [arXiv:1704.08895] [INSPIRE].CrossRefMATHGoogle Scholar
  66. [66]
    M. Hidding and F. Moriello, All orders structure and efficient computation of linearly reducible elliptic Feynman integrals, arXiv:1712.04441 [INSPIRE].
  67. [67]
    G. Passarino, Elliptic Polylogarithms and Basic Hypergeometric Functions, Eur. Phys. J. C 77 (2017) 77 [arXiv:1610.06207] [INSPIRE].
  68. [68]
    F. Brown and A. Levin, Multiple Elliptic Polylogarithms, arXiv:1110.6917.
  69. [69]
    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP 07 (2015) 112 [arXiv:1412.5535] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    J. Broedel, N. Matthes and O. Schlotterer, Relations between elliptic multiple zeta values and a special derivation algebra, J. Phys. A 49 (2016) 155203 [arXiv:1507.02254] [INSPIRE].
  71. [71]
    J. Broedel, N. Matthes, G. Richter and O. Schlotterer, Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes, J. Phys. A 51 (2018) 285401 [arXiv:1704.03449] [INSPIRE].
  72. [72]
    J. Broedel, O. Schlotterer and F. Zerbini, From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop, arXiv:1803.00527 [INSPIRE].
  73. [73]
    Y.I. Manin, Iterated integrals of modular forms and noncommutative modular symbols, in Algebraic geometry and number theory, Birkhäuser Boston, Progr. Math. 253 (2006) 565 [math/0502576].
  74. [74]
    F. Brown, Multiple modular values and the relative completion of the fundamental group of1,1, arXiv:1407.5167.
  75. [75]
    F. Brown, Notes on Motivic Periods, arXiv:1512.06410.
  76. [76]
    C. Duhr, Mathematical aspects of scattering amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), Boulder, Colorado, June 2-27, 2014, pp. 419-476 (2015) [DOI:] [arXiv:1411.7538] [INSPIRE].
  77. [77]
    J.A. Lappo-Danilevsky, Théorie algorithmique des corps de Riemann, Rec. Math. Moscou 34 (1927) 113.MATHGoogle Scholar
  78. [78]
    N. Matthes, Elliptic Multiple Zeta Values, Ph.D. Thesis, Universität Hamburg (2016).Google Scholar
  79. [79]
    J.H. Silverman, The Arithmetic of Elliptic Curves, 2nd edition, Springer (1986).Google Scholar
  80. [80]
    B. Enriquez, Analogues elliptiques des nombres multizétas, arXiv:1301.3042.
  81. [81]
    N. Matthes, Decomposition of elliptic multiple zeta values and iterated Eisenstein integrals, arXiv:1703.09597.
  82. [82]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  83. [83]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    D. Zagier, Elliptic Modular Forms and Their Applications, in The 1-2-3 of Modular Forms, Springer (2008).Google Scholar
  85. [85]
    N. Matthes, On the algebraic structure of iterated integrals of quasimodular forms, Alg. Numb. Theor. 11-9 (2017) 2113 [arXiv:1708.04561].
  86. [86]
    D. Zagier, private communication (2018).Google Scholar
  87. [87]
    B. Enriquez, Elliptic Associators, Selecta Math. 20 (2014) 491.Google Scholar
  88. [88]
    D. Calaque, B. Enriquez and P. Etingof, Universal KZB equations: the elliptic case, in Algebra, arithmetic, and geometry: in honor of Yu.I. Manin. Vol. I, Birkhäuser, Boston (2009), pp. 165-266.Google Scholar
  89. [89]
    R. Hain, Notes on the universal elliptic KZB equation, arXiv:1309.0580.
  90. [90]
    A. Pollack, Relations between derivations arising from modular forms, Honors Thesis, Duke University (2009).Google Scholar
  91. [91]
  92. [92]
    L. Adams and S. Weinzierl, The ε-form of the differential equations for Feynman integrals in the elliptic case, Phys. Lett. B 781 (2018) 270 [arXiv:1802.05020] [INSPIRE].
  93. [93]
    S. Abreu, R. Britto, C. Duhr and E. Gardi, Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction, Phys. Rev. Lett. 119 (2017) 051601 [arXiv:1703.05064] [INSPIRE].
  94. [94]
    S. Abreu, R. Britto, C. Duhr and E. Gardi, Cuts from residues: the one-loop case, JHEP 06 (2017) 114 [arXiv:1702.03163] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    S. Abreu, R. Britto, C. Duhr and E. Gardi, Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case, JHEP 12 (2017) 090 [arXiv:1704.07931] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institut für Mathematik und Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Theoretical Physics DepartmentCERNGenevaSwitzerland
  3. 3.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-La-NeuveBelgium
  4. 4.SLAC National Accelerator LaboratoryStanford UniversityStanfordU.S.A.

Personalised recommendations