Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos

  • Mona DentlerEmail author
  • Álvaro Hernández-Cabezudo
  • Joachim Kopp
  • Pedro Machado
  • Michele Maltoni
  • Ivan Martinez-Soler
  • Thomas Schwetz
Open Access
Regular Article - Theoretical Physics


We discuss the possibility to explain the anomalies in short-baseline neutrino oscillation experiments in terms of sterile neutrinos. We work in a 3 + 1 framework and pay special attention to recent new data from reactor experiments, IceCube and MINOS+. We find that results from the DANSS and NEOS reactor experiments support the sterile neutrino explanation of the reactor anomaly, based on an analysis that relies solely on the relative comparison of measured reactor spectra. Global data from the νe disappearance channel favour sterile neutrino oscillations at the 3σ level with Δm 41 2  ≈ 1.3 eV2 and |Ue4| ≈ 0.1, even without any assumptions on predicted reactor fluxes. In contrast, the anomalies in the νe appearance channel (dominated by LSND) are in strong tension with improved bounds on νμ disappearance, mostly driven by MINOS+ and IceCube. Under the sterile neutrino oscillation hypothesis, the p-value for those data sets being consistent is less than 2.6 × 10−6. Therefore, an explanation of the LSND anomaly in terms of sterile neutrino oscillations in the 3 + 1 scenario is excluded at the 4.7σ level. This result is robust with respect to variations in the analysis and used data, in particular it depends neither on the theoretically predicted reactor neutrino fluxes, nor on constraints from any single experiment. Irrespective of the anomalies, we provide updated constraints on the allowed mixing strengths |Uα4| (α = e, μ, τ ) of active neutrinos with a fourth neutrino mass state in the eV range.


Neutrino Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    LSND collaboration, A.A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  2. [2]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved Search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1303.2588] [INSPIRE].
  3. [3]
    T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].
  4. [4]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  5. [5]
    G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].
  6. [6]
    A.C. Hayes, J.L. Friar, G.T. Garvey, G. Jungman and G. Jonkmans, Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly, Phys. Rev. Lett. 112 (2014) 202501 [arXiv:1309.4146] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.-L. Fang and B.A. Brown, Effect of first forbidden decays on the shape of neutrino spectra, Phys. Rev. C 91 (2015) 025503 [Erratum ibid. C 93 (2016) 049903] [arXiv:1502.02246] [INSPIRE].
  8. [8]
    A.C. Hayes and P. Vogel, Reactor Neutrino Spectra, Ann. Rev. Nucl. Part. Sci. 66 (2016) 219 [arXiv:1605.02047] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M.A. Acero, C. Giunti and M. Laveder, Limits on ν e and \( {\overline{\nu}}_e \) disappearance from Gallium and reactor experiments, Phys. Rev. D 78 (2008) 073009 [arXiv:0711.4222] [INSPIRE].
  10. [10]
    C. Giunti and M. Laveder, Statistical Significance of the Gallium Anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].
  11. [11]
    J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].
  12. [12]
    J.M. Conrad, C.M. Ignarra, G. Karagiorgi, M.H. Shaevitz and J. Spitz, Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, Adv. High Energy Phys. 2013 (2013) 163897 [arXiv:1207.4765] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    M. Archidiacono, N. Fornengo, C. Giunti, S. Hannestad and A. Melchiorri, Sterile neutrinos: Cosmology versus short-baseline experiments, Phys. Rev. D 87 (2013) 125034 [arXiv:1302.6720] [INSPIRE].
  14. [14]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The Global Picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Mirizzi et al., The strongest bounds on active-sterile neutrino mixing after Planck data, Phys. Lett. B 726 (2013) 8 [arXiv:1303.5368] [INSPIRE].
  16. [16]
    C. Giunti, M. Laveder, Y.F. Li and H.W. Long, Pragmatic View of Short-Baseline Neutrino Oscillations, Phys. Rev. D 88 (2013) 073008 [arXiv:1308.5288] [INSPIRE].
  17. [17]
    S. Gariazzo, C. Giunti and M. Laveder, Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments, JHEP 11 (2013) 211 [arXiv:1309.3192] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G.H. Collin, C.A. Argüelles, J.M. Conrad and M.H. Shaevitz, Sterile Neutrino Fits to Short Baseline Data, Nucl. Phys. B 908 (2016) 354 [arXiv:1602.00671] [INSPIRE].
  19. [19]
    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Updated Global 3 + 1 Analysis of Short-BaseLine Neutrino Oscillations, JHEP 06 (2017) 135 [arXiv:1703.00860] [INSPIRE].
  20. [20]
    C. Giunti, X.P. Ji, M. Laveder, Y.F. Li and B.R. Littlejohn, Reactor Fuel Fraction Information on the Antineutrino Anomaly, JHEP 10 (2017) 143 [arXiv:1708.01133] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Dentler, Á. Hernández-Cabezudo, J. Kopp, M. Maltoni and T. Schwetz, Sterile neutrinos or flux uncertainties? — Status of the reactor anti-neutrino anomaly, JHEP 11 (2017) 099 [arXiv:1709.04294] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Daya Bay collaboration, F.P. An et al., Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment, Phys. Rev. Lett. 117 (2016) 151802 [arXiv:1607.01174] [INSPIRE].
  23. [23]
    NEOS collaboration, Y.J. Ko et al., Sterile Neutrino Search at the NEOS Experiment, Phys. Rev. Lett. 118 (2017) 121802 [arXiv:1610.05134] [INSPIRE].
  24. [24]
    I. Alekseev et al., DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator, 2016 JINST 11 P11011 [arXiv:1606.02896] [INSPIRE].
  25. [25]
    M. Danilov, Search for sterile neutrinos at the DANSS and Neutrino-4 experiments talk given on behalf of the DANSS collaboration at the 52nd Rencontres de Moriond EW 2017, La Thuile, Italy, 18-25 March 2017
  26. [26]
    M. Danilov, Search for sterile neutrinos at the DANSS experiment, talk given on behalf of the DANSS collaboration at the Solvay Workshop ‘Beyond the Standard model with Neutrinos and Nuclear Physics’, Brussels, Belgium, 29 November-1 December 2017.Google Scholar
  27. [27]
    RENO collaboration, S.H. Seo et al., Spectral Measurement of the Electron Antineutrino Oscillation Amplitude and Frequency using 500 Live Days of RENO Data, Phys. Rev. D 98 (2018) 012002 [arXiv:1610.04326] [INSPIRE].
  28. [28]
    Double CHOOZ collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ 13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum JHEP 02 (2015) 074] [arXiv:1406.7763] [INSPIRE].
  29. [29]
    Daya Bay collaboration, F.P. An et al., Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Chin. Phys. C 41 (2017) 013002 [arXiv:1607.05378] [INSPIRE].
  30. [30]
    D.A. Dwyer and T.J. Langford, Spectral Structure of Electron Antineutrinos from Nuclear Reactors, Phys. Rev. Lett. 114 (2015) 012502 [arXiv:1407.1281] [INSPIRE].
  31. [31]
    A.C. Hayes et al., Possible origins and implications of the shoulder in reactor neutrino spectra, Phys. Rev. D 92 (2015) 033015 [arXiv:1506.00583] [INSPIRE].
  32. [32]
    P. Novella, The antineutrino energy structure in reactor experiments, Adv. High Energy Phys. 2015 (2015) 364392 [arXiv:1512.03366] [INSPIRE].
  33. [33]
    C. Giunti, Precise determination of the 235 U reactor antineutrino cross section per fission, Phys. Lett. B 764 (2017) 145 [arXiv:1608.04096] [INSPIRE].
  34. [34]
    P. Huber, NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum, Phys. Rev. Lett. 118 (2017) 042502 [arXiv:1609.03910] [INSPIRE].
  35. [35]
    A.K. Mohanty, Possible origin of shoulder in the reactor antineutrino spectrum, arXiv:1711.02801 [INSPIRE].
  36. [36]
    J.M. Berryman, V. Brdar and P. Huber, Nuclear and Particle Conspiracy Solves Both Reactor Antineutrino Anomalies, arXiv:1803.08506 [INSPIRE].
  37. [37]
    Daya Bay collaboration, F.P. An et al., Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay, Phys. Rev. Lett. 118 (2017) 251801 [arXiv:1704.01082] [INSPIRE].
  38. [38]
    P. Huber and P. Jaffke, Neutron capture and the antineutrino yield from nuclear reactors, Phys. Rev. Lett. 116 (2016) 122503 [arXiv:1510.08948] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Huber, Nuclear physics and the reactor anomaly, talk given at the CERN Neutrino Platform Week, Center for Neutrino Physics at Virginia Tech, Blacksburg, Virginia, U.S.A., 29 January-2 February 2018 and online pdf version at
  40. [40]
    OPERA collaboration, N. Agafonova et al., Search for ν μν e oscillations with the OPERA experiment in the CNGS beam, JHEP 07 (2013) 004 [Addendum JHEP 07 (2013) 085 ] [arXiv:1303.3953] [INSPIRE].
  41. [41]
    M. Antonello et al., Experimental search for the “LSND anomaly” with the ICARUS detector in the CNGS neutrino beam, Eur. Phys. J. C 73 (2013) 2345 [arXiv:1209.0122] [INSPIRE].
  42. [42]
    C. Farnese, Results from ICARUS, talk given at the Neutrino 2014, Boston, Massachusetts, U.S.A., 2-7 June 2014 and online pdf version at
  43. [43]
    MINOS collaboration, P. Adamson et al., Search for sterile neutrinos in MINOS and MINOS + using a two-detector fit, submitted to Phys. Rev. Lett. (2017), arXiv:1710.06488 [INSPIRE].
  44. [44]
    NOvA collaboration, P. Adamson et al., Search for active-sterile neutrino mixing using neutral-current interactions in NOvA, Phys. Rev. D 96 (2017) 072006 [arXiv:1706.04592] [INSPIRE].
  45. [45]
    Y. Nakano, 8 B solar neutrino spectrum measurement using Super-Kamiokande IV, Ph.D. Thesis, Tokyo University, Tokyo Japan (2016).Google Scholar
  46. [46]
    Borexino collaboration, G. Bellini et al., Neutrinos from the primary proton-proton fusion process in the Sun, Nature 512 (2014) 383 [INSPIRE].
  47. [47]
    N. Vinyoles et al., A new Generation of Standard Solar Models, Astrophys. J. 835 (2017) 202 [arXiv:1611.09867] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Super-Kamiokande collaboration, R. Wendell, Atmospheric Results from Super-Kamiokande, AIP Conf. Proc. 1666 (2015) 100001 [arXiv:1412.5234] [INSPIRE] and online at
  49. [49]
    IceCube collaboration, M.G. Aartsen et al., Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data, Phys. Rev. D 91 (2015) 072004 [arXiv:1410.7227] [INSPIRE].
  50. [50]
    IceCube collaboration, J.P. Yañez et al., IceCube Oscillations: 3 years muon neutrino disappearance data, (2015)
  51. [51]
    M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model, Phys. Rev. D 92 (2015) 023004 [arXiv:1502.03916] [INSPIRE].
  52. [52]
    IceCube collaboration, M.G. Aartsen et al., Searches for Sterile Neutrinos with the IceCube Detector, Phys. Rev. Lett. 117 (2016) 071801 [arXiv:1605.01990] [INSPIRE] and online at
  53. [53]
    B.J.P. Jones, Sterile neutrinos in cold climates, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge Massachusetts U.S.A. (2015) and online at
  54. [54]
    C.A. Argüelles, New Physics with Atmospheric Neutrinos, Ph.D. Thesis, University of Wisconsin, Madison Wisconsin U.S.A. (2015) and online pdf version at
  55. [55]
    L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].
  56. [56]
    S.P. Mikheyev and A.Y. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [INSPIRE].
  57. [57]
    H. Nunokawa, O.L.G. Peres and R. Zukanovich Funchal, Probing the LSND mass scale and four neutrino scenarios with a neutrino telescope, Phys. Lett. B 562 (2003) 279 [hep-ph/0302039] [INSPIRE].
  58. [58]
    S. Choubey, Signature of sterile species in atmospheric neutrino data at neutrino telescopes, JHEP 12 (2007) 014 [arXiv:0709.1937] [INSPIRE].
  59. [59]
    H. Kwon et al., Search for Neutrino Oscillations at a Fission Reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].
  60. [60]
    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].
  61. [61]
    G.S. Vidyakin et al., Detection of Anti-neutrinos in the Flux From Two Reactors, Sov. Phys. JETP 66 (1987) 243 [Zh. Eksp. Teor. Fiz. 93 (1987) 424] [INSPIRE].
  62. [62]
    G.S. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [Pisma Zh. Eksp. Teor. Fiz. 59 (1994) 364] [INSPIRE].
  63. [63]
    Y.V. Kozlov et al., Today and future neutrino experiments at Krasnoyarsk nuclear reactor, Nucl. Phys. Proc. Suppl. 87 (2000) 514 [hep-ex/9912046] [INSPIRE].
  64. [64]
    A.I. Afonin, S.N. Ketov, V.I. Kopeikin, L.A. Mikaelyan, M.D. Skorokhvatov and S.V. Tolokonnikov, A study of the reaction \( {\overline{\nu}}_e+p\to {e}^{+}+n \) on a nuclear reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].
  65. [65]
    A.A. Kuvshinnikov, L.A. Mikaelyan, S.V. Nikolaev, M.D. Skorokhvatov and A.V. Etenko, Measuring the \( {\overline{\nu}}_e+p\to n+{e}^{+} \) cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor (in Russian), JETP Lett. 54 (1991) 253 [INSPIRE].
  66. [66]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].
  67. [67]
    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].
  68. [68]
    Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].
  69. [69]
    H. Seo, New Results from RENO, talk given on behalf of the RENO collaboration at the EPS conference on High Energy Physics, Venice, Italy, 5-11 July 2017.Google Scholar
  70. [70]
    S.-H. Seo, New Results from RENO, talk given on behalf of the RENO collaboration at the XXVI International Conference on Neutrino Physics and Astrophysics, Boston, Massachusetts, U.S.A., 2-7 June 2014.Google Scholar
  71. [71]
    Daya Bay collaboration, F.P. An et al., Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys. Rev. D 95 (2017) 072006 [arXiv:1610.04802] [INSPIRE].
  72. [72]
    KamLAND collaboration, A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].
  73. [73]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].
  74. [74]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].
  75. [75]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
  76. [76]
    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].
  77. [77]
    Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].
  78. [78]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].
  79. [79]
    SNO collaboration, B. Aharmim et al., Determination of the ν e and total 8 B solar neutrino fluxes with the Sudbury neutrino observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [INSPIRE].
  80. [80]
    SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of 8 B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].
  81. [81]
    SNO collaboration, B. Aharmim et al., An Independent Measurement of the Total Active 8 B Solar Neutrino Flux Using an Array of 3 He Proportional Counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].
  82. [82]
    Borexino collaboration, G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].
  83. [83]
    Borexino collaboration, G. Bellini et al., Measurement of the solar 8 B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].
  84. [84]
    J. Reichenbacher, Final KARMEN results on neutrino oscillations and neutrino nucleus interactions in the energy regime of supernovae, Ph.D. Thesis, Karlsruhe Universität, Karlsruhe Germany (2005).Google Scholar
  85. [85]
    B. Armbruster et al., KARMEN limits on ν eν τ oscillations in two neutrino and three neutrino mixing schemes, Phys. Rev. C 57 (1998) 3414 [hep-ex/9801007] [INSPIRE].
  86. [86]
    J.M. Conrad and M.H. Shaevitz, Limits on Electron Neutrino Disappearance from the KARMEN and LSND ν e -Carbon Cross Section Data, Phys. Rev. D 85 (2012) 013017 [arXiv:1106.5552] [INSPIRE].
  87. [87]
    LSND collaboration, L.B. Auerbach et al., Measurements of charged current reactions of ν e on 12 C, Phys. Rev. C 64 (2001) 065501 [hep-ex/0105068] [INSPIRE].
  88. [88]
    GALLEX collaboration, W. Hampel et al., Final results of the 51 Cr neutrino source experiments in GALLEX, Phys. Lett. B 420 (1998) 114 [INSPIRE].
  89. [89]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the response of the Russian-American gallium experiment to neutrinos from a 51 Cr source, Phys. Rev. C 59 (1999) 2246 [hep-ph/9803418] [INSPIRE].
  90. [90]
    J.N. Abdurashitov et al., Measurement of the response of a Ga solar neutrino experiment to neutrinos from an 37 Ar source, Phys. Rev. C 73 (2006) 045805 [nucl-ex/0512041] [INSPIRE].
  91. [91]
    S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Model-independent \( {\overline{\nu}}_e \) short-baseline oscillations from reactor spectral ratios, Phys. Lett. B 782 (2018) 13 [arXiv:1801.06467] [INSPIRE].
  92. [92]
    M. Maltoni and T. Schwetz, Testing the statistical compatibility of independent data sets, Phys. Rev. D 68 (2003) 033020 [hep-ph/0304176] [INSPIRE].
  93. [93]
    M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [INSPIRE].
  94. [94]
    KARMEN collaboration, B. Armbruster et al., Upper limits for neutrino oscillations \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) from muon decay at rest, Phys. Rev. D 65 (2002) 112001 [hep-ex/0203021] [INSPIRE].
  95. [95]
    NOMAD collaboration, P. Astier et al., Search for ν μν e oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].
  96. [96]
    L. Borodovsky et al., Search for muon-neutrino oscillations \( {\nu}_{\mu}\to {\nu}_e\left({\overline{\nu}}_{\mu}\to {\overline{\nu}}_e\right) \) in a wide band neutrino beam, Phys. Rev. Lett. 68 (1992) 274 [INSPIRE].
  97. [97]
    C. Farnese, Some recent results from ICARUS, AIP Conf. Proc. 1666 (2015) 110002 [INSPIRE] and online at
  98. [98]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Data release for arXiv:1207.4809, (2012) and online at
  99. [99]
    M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Ruling out four neutrino oscillation interpretations of the LSND anomaly?, Nucl. Phys. B 643 (2002) 321 [hep-ph/0207157] [INSPIRE].
  100. [100]
    F. Dydak et al., A Search for ν μ oscillations in the Δm 2 range 0.3-90 eV 2, Phys. Lett. B 134 (1984) 281 [INSPIRE].
  101. [101]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., A Search for muon neutrino and antineutrino disappearance in MiniBooNE, Phys. Rev. Lett. 103 (2009) 061802 [arXiv:0903.2465] [INSPIRE].
  102. [102]
    SciBooNE and MiniBooNE collaborations, G. Cheng et al., Dual baseline search for muon antineutrino disappearance at 0.1 eV 2 < Δm 2 < 100 eV 2, Phys. Rev. D 86 (2012) 052009 [arXiv:1208.0322] [INSPIRE].
  103. [103]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].
  104. [104]
    MINOS collaboration, P. Adamson et al., Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS, Phys. Rev. Lett. 117 (2016) 151803 [arXiv:1607.01176] [INSPIRE].
  105. [105]
    A.M. Dziewonski and D.L. Anderson, Preliminary Reference Earth Model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    W.C. Louis, Problems With the MINOS/MINOS+ Sterile Neutrino ν μ Result, arXiv:1803.11488 [INSPIRE].
  107. [107]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Data release for arXiv:0903.2465, (2009) and online at
  108. [108]
    M. Blennow, E. Fernandez-Martinez, J. Gehrlein, J. Hernandez-Garcia and J. Salvado, IceCube bounds on sterile neutrinos above 10 eV, arXiv:1803.02362 [INSPIRE].
  109. [109]
    S.M. Bilenky, C. Giunti and W. Grimus, Neutrino mass spectrum from the results of neutrino oscillation experiments, Eur. Phys. J. C 1 (1998) 247 [hep-ph/9607372] [INSPIRE].
  110. [110]
    N. Okada and O. Yasuda, A Sterile neutrino scenario constrained by experiments and cosmology, Int. J. Mod. Phys. A 12 (1997) 3669 [hep-ph/9606411] [INSPIRE].
  111. [111]
    V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Variations on four neutrino oscillations, Phys. Rev. D 58 (1998) 093016 [hep-ph/9806328] [INSPIRE].
  112. [112]
    R.H. Cyburt, B.D. Fields, K.A. Olive and T.-H. Yeh, Big Bang Nucleosynthesis: 2015, Rev. Mod. Phys. 88 (2016) 015004 [arXiv:1505.01076] [INSPIRE].
  113. [113]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  114. [114]
    B. Dasgupta and J. Kopp, Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure, Phys. Rev. Lett. 112 (2014) 031803 [arXiv:1310.6337] [INSPIRE].
  115. [115]
    S. Hannestad, R.S. Hansen and T. Tram, How Self-Interactions can Reconcile Sterile Neutrinos with Cosmology, Phys. Rev. Lett. 112 (2014) 031802 [arXiv:1310.5926] [INSPIRE].
  116. [116]
    X. Chu, B. Dasgupta, M. Dentler, J. Kopp and N. Saviano, Sterile Neutrinos with Secret Interactions — Cosmological Discord?, arXiv:1806.10629 [INSPIRE].
  117. [117]
    J.F. Cherry, A. Friedland and I.M. Shoemaker, Short-baseline neutrino oscillations, Planc and IceCube, arXiv:1605.06506 [INSPIRE].
  118. [118]
    C.E. Yaguna, Sterile neutrino production in models with low reheating temperatures, JHEP 06 (2007) 002 [arXiv:0706.0178] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    N. Saviano, A. Mirizzi, O. Pisanti, P.D. Serpico, G. Mangano and G. Miele, Multi-momentum and multi-flavour active-sterile neutrino oscillations in the early universe: role of neutrino asymmetries and effects on nucleosynthesis, Phys. Rev. D 87 (2013) 073006 [arXiv:1302.1200] [INSPIRE].
  120. [120]
    C.M. Ho and R.J. Scherrer, Sterile Neutrinos and Light Dark Matter Save Each Other, Phys. Rev. D 87 (2013) 065016 [arXiv:1212.1689] [INSPIRE].
  121. [121]
    M. Giovannini, H. Kurki-Suonio and E. Sihvola, Big bang nucleosynthesis, matter antimatter regions, extra relativistic species and relic gravitational waves, Phys. Rev. D 66 (2002) 043504 [astro-ph/0203430] [INSPIRE].
  122. [122]
    J.L. Bernal, L. Verde and A.G. Riess, The trouble with H 0, JCAP 10 (2016) 019 [arXiv:1607.05617] [INSPIRE].
  123. [123]
    STEREO collaboration, H. Almazán et al., Sterile neutrino exclusion from the STEREO experiment with 66 days of reactor-on data, arXiv:1806.02096 [INSPIRE].
  124. [124]
    PROSPECT collaboration, J. Ashenfelter et al., First search for short-baseline neutrino oscillations at HFIR with PROSPECT, arXiv:1806.02784 [INSPIRE].
  125. [125]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Observation of a Significant Excess of Electron-Like Events in the MiniBooNE Short-Baseline Neutrino Experiment, arXiv:1805.12028 [INSPIRE].
  126. [126]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  127. [127]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Mona Dentler
    • 1
    Email author
  • Álvaro Hernández-Cabezudo
    • 2
  • Joachim Kopp
    • 1
    • 3
  • Pedro Machado
    • 4
  • Michele Maltoni
    • 5
  • Ivan Martinez-Soler
    • 5
  • Thomas Schwetz
    • 2
  1. 1.PRISMA Cluster of Excellence, Johannes Gutenberg University MainzMainzGermany
  2. 2.Institut für Kernphysik, Karlsruher Institut für Technologie (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  4. 4.Theoretical Physics Department, Fermi National Accelerator LaboratoryBataviaU.S.A.
  5. 5.Instituto de Física Teórica UAM/CSICMadridSpain

Personalised recommendations