Advertisement

Semi-abelian Z-theory: NLSM+ϕ 3 from the open string

  • John Joseph M. Carrasco
  • Carlos R. MafraEmail author
  • Oliver Schlotterer
Open Access
Regular Article - Theoretical Physics

Abstract

We continue our investigation of Z-theory, the second double-copy component of open-string tree-level interactions besides super-Yang-Mills (sYM). We show that the amplitudes of the extended non-linear sigma model (NLSM) recently considered by Cachazo, Cha, and Mizera are reproduced by the leading α -order of Z-theory amplitudes in the semi-abelian case. The extension refers to a coupling of NLSM pions to bi-adjoint scalars, and the semi-abelian case involves to a partial symmetrization over one of the color orderings that characterize the Z-theory amplitudes. Alternatively, the partial symmetrization corresponds to a mixed interaction among abelian and non-abelian states in the underlying open-superstring amplitude. We simplify these permutation sums via monodromy relations which greatly increase the efficiency in extracting the α -expansion of these amplitudes. Their α -corrections encode higher-derivative interactions between NLSM pions and bi-colored scalars all of which obey the duality between color and kinematics. Through double-copy, these results can be used to generate the predictions of supersymmetric Dirac-Born-Infeld-Volkov-Akulov theory coupled with sYM as well as a complete tower of higher-order α -corrections.

Keywords

Effective Field Theories Field Theories in Higher Dimensions Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α -corrections from the open string, JHEP 06 (2017) 093 [arXiv:1608.02569] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C.R. Mafra and O. Schlotterer, Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals, JHEP 01 (2017) 031 [arXiv:1609.07078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Kawai, D.C. Lewellen and S.-H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  6. [6]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  9. [9]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].
  10. [10]
    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.A. Cronin, Phenomenological model of strong and weak interactions in chiral U(3) × U(3), Phys. Rev. 161 (1967) 1483 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Weinberg, Dynamical approach to current algebra, Phys. Rev. Lett. 18 (1967) 188 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    L.S. Brown, Field theory of chiral symmetry, Phys. Rev. 163 (1967) 1802 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Chang and F. Gursey, Unified formulation of effective nonlinear pion-nucleon Lagrangians, Phys. Rev. 164 (1967) 1752 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Susskind and G. Frye, Algebraic aspects of pionic duality diagrams, Phys. Rev. D 1 (1970) 1682 [INSPIRE].ADSGoogle Scholar
  18. [18]
    H. Osborn, Implications of Adler zeros for multipion processes, Lett. Nuovo Cim. 2S1 (1969) 717 [Erratum ibid. 3 (1970) 135] [INSPIRE].
  19. [19]
    J.R. Ellis and B. Renner, On the relationship between chiral and dual models, Nucl. Phys. B 21 (1970) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K. Kampf, J. Novotny and J. Trnka, Tree-level amplitudes in the nonlinear σ-model, JHEP 05 (2013) 032 [arXiv:1304.3048] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S. Caron-Huot, Z. Komargodski, A. Sever and A. Zhiboedov, Strings from massive higher spins: the asymptotic uniqueness of the Veneziano amplitude, arXiv:1607.04253 [INSPIRE].
  23. [23]
    N. Arkani-Hamed and Y.-T. Huang, Towards deriving string theory as the weakly coupled UV-completion of gravity, http://ymsc.tsinghua.edu.cn:8090/strings/slides/8.3/ Nima%208.3.pdf.
  24. [24]
    F. Cachazo, P. Cha and S. Mizera, Extensions of theories from soft limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    E. Bergshoeff, F. Coomans, R. Kallosh, C.S. Shahbazi and A. Van Proeyen, Dirac-Born-Infeld-Volkov-Akulov and deformation of supersymmetry, JHEP 08 (2013) 100 [arXiv:1303.5662] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
  31. [31]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev. D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    J.J.M. Carrasco, R. Kallosh and A. Linde, α-attractors: Planck, LHC and dark energy, JHEP 10 (2015) 147 [arXiv:1506.01708] [INSPIRE].
  34. [34]
    J.J.M. Carrasco, R. Kallosh and A. Linde, Minimal supergravity inflation, Phys. Rev. D 93 (2016) 061301 [arXiv:1512.00546] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter supergravity, Phys. Rev. D 92 (2015) 085040 [Erratum ibid. D 93 (2016) 069901] [arXiv:1507.08264] [INSPIRE].
  36. [36]
    F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4 dimensional N = 1 supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    S.M. Kuzenko, Complex linear Goldstino superfield and supergravity, JHEP 10 (2015) 006 [arXiv:1508.03190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking and de Sitter supergravity, JHEP 02 (2016) 080 [arXiv:1511.03024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    R. Kallosh, Nonlinear (super)symmetries and amplitudes, JHEP 03 (2017) 038 [arXiv:1609.09123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    R. Kallosh, A. Karlsson and D. Murli, Origin of soft limits from nonlinear supersymmetry in Volkov-Akulov theory, JHEP 03 (2017) 081 [arXiv:1609.09127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A periodic table of effective field theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    Y.-J. Du and H. Lüo, Leading order multi-soft behaviors of tree amplitudes in NLSM, JHEP 03 (2017) 062 [arXiv:1611.07479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE].
  47. [47]
    Q. Ma, Y.-J. Du and Y.-X. Chen, On primary relations at tree-level in string theory and field theory, JHEP 02 (2012) 061 [arXiv:1109.0685] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    C.R. Mafra, Berends-Giele recursion for double-color-ordered amplitudes, JHEP 07 (2016) 080 [arXiv:1603.09731] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    R.R. Metsaev, M. Rakhmanov and A.A. Tseytlin, The Born-Infeld action as the effective action in the open superstring theory, Phys. Lett. B 193 (1987) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    O. Schlotterer and S. Stieberger, Motivic multiple zeta values and superstring amplitudes, J. Phys. A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  52. [52]
    J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, All order α -expansion of superstring trees from the Drinfeld associator, Phys. Rev. D 89 (2014) 066014 [arXiv:1304.7304] [INSPIRE].ADSGoogle Scholar
  53. [53]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  54. [54]
    Y.-J. Du and C.-H. Fu, Explicit BCJ numerators of nonlinear sigma model, JHEP 09 (2016) 174 [arXiv:1606.05846] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    C. Cheung and C.-H. Shen, Symmetry for flavor-kinematics duality from an action, Phys. Rev. Lett. 118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R. Medina, F.T. Brandt and F.R. Machado, The open superstring five point amplitude revisited, JHEP 07 (2002) 071 [hep-th/0208121] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    L.A. Barreiro and R. Medina, 5-field terms in the open superstring effective action, JHEP 03 (2005) 055 [hep-th/0503182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    D. Oprisa and S. Stieberger, Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums, hep-th/0509042 [INSPIRE].
  60. [60]
    S. Stieberger and T.R. Taylor, Multi-gluon scattering in open superstring theory, Phys. Rev. D 74 (2006) 126007 [hep-th/0609175] [INSPIRE].ADSGoogle Scholar
  61. [61]
    R.H. Boels, On the field theory expansion of superstring five point amplitudes, Nucl. Phys. B 876 (2013) 215 [arXiv:1304.7918] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    G. Puhlfürst and S. Stieberger, Differential equations, associators and recurrences for amplitudes, Nucl. Phys. B 902 (2016) 186 [arXiv:1507.01582] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    K. Aomoto, Special values of hyperlogarithms and linear difference schemes, Illinois J. Math. 34 (1990) 191.MathSciNetzbMATHGoogle Scholar
  64. [64]
    T. Terasoma, Selberg integrals and multiple zeta values, Compos. Math. 133 (2002) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces \( \mathrm{\mathcal{M}} \) 0,n(R), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].
  66. [66]
    S. Stieberger, Constraints on tree-level higher order gravitational couplings in superstring theory, Phys. Rev. Lett. 106 (2011) 111601 [arXiv:0910.0180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    J.M. Drummond and É. Ragoucy, Superstring amplitudes and the associator, JHEP 08 (2013) 135 [arXiv:1301.0794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    J. Broedel, O. Schlotterer and S. Stieberger, α -expansion of open superstring amplitudes, http://mzv.mpp.mpg.de.
  69. [69]
    M.B. Green and M. Gutperle, Symmetry breaking at enhanced symmetry points, Nucl. Phys. B 460 (1996) 77 [hep-th/9509171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    S. Stieberger and T.R. Taylor, New relations for Einstein-Yang-Mills amplitudes, Nucl. Phys. B 913 (2016) 151 [arXiv:1606.09616] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    D. Nandan, J. Plefka, O. Schlotterer and C. Wen, Einstein-Yang-Mills from pure Yang-Mills amplitudes, JHEP 10 (2016) 070 [arXiv:1607.05701] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    L. de la Cruz, A. Kniss and S. Weinzierl, Relations for Einstein-Yang-Mills amplitudes from the CHY representation, Phys. Lett. B 767 (2017) 86 [arXiv:1607.06036] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    O. Schlotterer, Amplitude relations in heterotic string theory and Einstein-Yang-Mills, JHEP 11 (2016) 074 [arXiv:1608.00130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    Y.-J. Du, F. Teng and Y.-S. Wu, Direct evaluation of n-point single-trace MHV amplitudes in 4d Einstein-Yang-Mills theory using the CHY formalism, JHEP 09 (2016) 171 [arXiv:1608.00883] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    F. Cachazo and H. Gomez, Computation of contour integrals on \( \mathrm{\mathcal{M}} \) 0,n, JHEP 04 (2016) 108 [arXiv:1505.03571] [INSPIRE].ADSMathSciNetGoogle Scholar
  76. [76]
    C. Cardona, B. Feng, H. Gomez and R. Huang, Cross-ratio identities and higher-order poles of CHY-integrand, JHEP 09 (2016) 133 [arXiv:1606.00670] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • John Joseph M. Carrasco
    • 1
  • Carlos R. Mafra
    • 2
    Email author
  • Oliver Schlotterer
    • 3
  1. 1.Institut de Physique Théorique, CEA-SaclayGif-sur-Yvette cedexFrance
  2. 2.STAG Research Centre and Mathematical SciencesUniversity of SouthamptonSouthamptonU.K.
  3. 3.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany

Personalised recommendations