Phenomenological comparison of models with extended Higgs sectors

  • Margarete Mühlleitner
  • Marco O. P. Sampaio
  • Rui Santos
  • Jonas Wittbrodt
Open Access
Regular Article - Theoretical Physics

Abstract

Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their ability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (CxSM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

Keywords

Beyond Standard Model Higgs Physics CP violation Supersymmetric Standard Model 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    C. Englert et al., Precision Measurements of Higgs Couplings: Implications for New Physics Scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].
  5. [5]
    ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [arXiv:1506.05669] [INSPIRE].
  6. [6]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  7. [7]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, Eur. Phys. J. C 76 (2016) 6 [arXiv:1507.04548] [INSPIRE].
  8. [8]
    ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  9. [9]
    S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz, Discovery Prospects for NMSSM Higgs Bosons at the High-Energy Large Hadron Collider, Phys. Rev. D 90 (2014) 095014 [arXiv:1408.1120] [INSPIRE].
  10. [10]
    D. Fontes, J.C. Romão, R. Santos and J.P. Silva, Undoubtable signs of CP -violation in Higgs boson decays at the LHC run 2, Phys. Rev. D 92 (2015) 055014 [arXiv:1506.06755] [INSPIRE].
  11. [11]
    S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz, Exploring the CP-violating NMSSM: EDM Constraints and Phenomenology, Nucl. Phys. B 901 (2015) 526 [arXiv:1508.03255] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    R. Costa, M. Mühlleitner, M.O.P. Sampaio and R. Santos, Singlet Extensions of the Standard Model at LHC Run 2: Benchmarks and Comparison with the NMSSM, JHEP 06 (2016) 034 [arXiv:1512.05355] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001 [arXiv:1206.3560] [INSPIRE].
  14. [14]
    R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE].
  15. [15]
    R. Gröber, M. Mühlleitner and M. Spira, Signs of Composite Higgs Pair Production at Next-to-Leading Order, JHEP 06 (2016) 080 [arXiv:1602.05851] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Coimbra, M.O.P. Sampaio and R. Santos, ScannerS: Constraining the phase diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C 73 (2013) 2428 [arXiv:1301.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  18. [18]
    T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].ADSGoogle Scholar
  19. [19]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on Scalar Dark Matter from Direct Experimental Searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [INSPIRE].
  21. [21]
    B. Grzadkowski and P. Osland, Tempered Two-Higgs-Doublet Model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].ADSMATHGoogle Scholar
  22. [22]
    H.E. Logan, Dark matter annihilation through a lepton-specific Higgs boson, Phys. Rev. D 83 (2011) 035022 [arXiv:1010.4214] [INSPIRE].
  23. [23]
    M.S. Boucenna and S. Profumo, Direct and Indirect Singlet Scalar Dark Matter Detection in the Lepton-Specific two-Higgs-doublet Model, Phys. Rev. D 84 (2011) 055011 [arXiv:1106.3368] [INSPIRE].
  24. [24]
    X.-G. He, B. Ren and J. Tandean, Hints of Standard Model Higgs Boson at the LHC and Light Dark Matter Searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].
  25. [25]
    Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, Two-Higgs-doublet-portal dark-matter model: LHC data and Fermi-LAT 135 GeV line, Phys. Rev. D 88 (2013) 015008 [arXiv:1212.5604] [INSPIRE].
  26. [26]
    X.-G. He and J. Tandean, Low-Mass Dark-Matter Hint from CDMS II, Higgs Boson at the LHC and Darkon Models, Phys. Rev. D 88 (2013) 013020 [arXiv:1304.6058] [INSPIRE].
  27. [27]
    Y. Cai and T. Li, Singlet dark matter in a type-II two Higgs doublet model, Phys. Rev. D 88 (2013) 115004 [arXiv:1308.5346] [INSPIRE].ADSGoogle Scholar
  28. [28]
    L. Wang and X.-F. Han, A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess, Phys. Lett. B 739 (2014) 416 [arXiv:1406.3598] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Extending two-Higgs-doublet models by a singlet scalar field - the Case for Dark Matter, JHEP 11 (2014) 105 [arXiv:1408.2106] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Campbell, S. Godfrey, H.E. Logan, A.D. Peterson and A. Poulin, Implications of the observation of dark matter self-interactions for singlet scalar dark matter, Phys. Rev. D 92 (2015) 055031 [arXiv:1505.01793] [INSPIRE].
  31. [31]
    S. von Buddenbrock et al., Phenomenological signatures of additional scalar bosons at the LHC, Eur. Phys. J. C 76 (2016) 580 [arXiv:1606.01674] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C.-Y. Chen, M. Freid and M. Sher, Next-to-minimal two Higgs doublet model, Phys. Rev. D 89 (2014) 075009 [arXiv:1312.3949] [INSPIRE].
  33. [33]
    M. Mühlleitner, M.O.P. Sampaio, R. Santos and J. Wittbrodt, The N2HDM under Theoretical and Experimental Scrutiny, JHEP 03 (2017) 094 [arXiv:1612.01309] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Barbieri, S. Ferrara and C.A. Savoy, Gauge Models with Spontaneously Broken Local Supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    H.P. Nilles, M. Srednicki and D. Wyler, Weak Interaction Breakdown Induced by Supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion Masses and Induction of the Weak Scale by Supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.P. Derendinger and C.A. Savoy, Quantum Effects and SU(2) × U(1) Breaking in Supergravity Gauge Theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Drees, Supersymmetric Models with Extended Higgs Sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in supersymmetric models with a gauge singlet, Phys. Lett. B 315 (1993) 331 [hep-ph/9307322] [INSPIRE].
  43. [43]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Higgs phenomenology of the supersymmetric model with a gauge singlet, Z. Phys. C 67 (1995) 665 [hep-ph/9502206] [INSPIRE].
  44. [44]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of supersymmetric models with a singlet, Nucl. Phys. B 492 (1997) 21 [hep-ph/9611251] [INSPIRE].
  45. [45]
    T. Elliott, S.F. King and P.L. White, Unification constraints in the next-to-minimal supersymmetric standard model, Phys. Lett. B 351 (1995) 213 [hep-ph/9406303] [INSPIRE].
  46. [46]
    S.F. King and P.L. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE].
  47. [47]
    F. Franke and H. Fraas, Neutralinos and Higgs bosons in the next-to-minimal supersymmetric standard model, Int. J. Mod. Phys. A 12 (1997) 479 [hep-ph/9512366] [INSPIRE].
  48. [48]
    M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    I.F. Ginzburg, M. Krawczyk and P. Osland, Two Higgs doublet models with CP-violation, proceedings of the International Workshop on physics and experiments with future electron-positron linear colliders, LCWS 2002, Seogwipo, Jeju Island, Korea, August 26-30, 2002, pp. 703-706, hep-ph/0211371 [INSPIRE].
  51. [51]
    W. Khater and P. Osland, CP violation in top quark production at the LHC and two Higgs doublet models, Nucl. Phys. B 661 (2003) 209 [hep-ph/0302004] [INSPIRE].
  52. [52]
    A.W. El Kaffas, W. Khater, O.M. Ogreid and P. Osland, Consistency of the two Higgs doublet model and CP-violation in top production at the LHC, Nucl. Phys. B 775 (2007) 45 [hep-ph/0605142] [INSPIRE].
  53. [53]
    A.W. El Kaffas, P. Osland and O.M. Ogreid, CP violation, stability and unitarity of the two Higgs doublet model, Nonlin. Phenom. Complex Syst. 10 (2007) 347 [hep-ph/0702097] [INSPIRE].
  54. [54]
    A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the Two-Higgs-Doublet-Model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].
  55. [55]
    P. Osland, P.N. Pandita and L. Selbuz, Trilinear Higgs couplings in the two Higgs doublet model with CP-violation, Phys. Rev. D 78 (2008) 015003 [arXiv:0802.0060] [INSPIRE].
  56. [56]
    A. Arhrib, E. Christova, H. Eberl and E. Ginina, CP violation in charged Higgs production and decays in the Complex Two Higgs Doublet Model, JHEP 04 (2011) 089 [arXiv:1011.6560] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].
  58. [58]
    D. Fontes, J.C. Romão and J.P. Silva, hZγ in the complex two Higgs doublet model, JHEP 12 (2014) 043 [arXiv:1408.2534] [INSPIRE].
  59. [59]
    S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [hep-ph/9709356] [INSPIRE].
  60. [60]
    S. Dawson, The MSSM and why it works, hep-ph/9712464 [INSPIRE].
  61. [61]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  62. [62]
    R. Costa, R. Guedes, M.O.P. Sampaio and R. Santos, ScannerS project, (2014), http://scanners.hepforge.org.
  63. [63]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
  64. [64]
    J.M. Butterworth et al., The Tools And Monte Carlo Working Group Summary Report from the Les Houches 2009 Workshop on TeV Colliders, in Physics at TeV colliders. Proceedings, 6th Workshop, dedicated to Thomas Binoth, Les Houches, France, June 8-26, 2009, (2010) arXiv:1003.1643 [INSPIRE].
  65. [65]
    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [INSPIRE].
  66. [66]
    F.J. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [INSPIRE].
  67. [67]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  68. [68]
    I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].
  69. [69]
    R. Costa, A.P. Morais, M.O.P. Sampaio and R. Santos, Two-loop stability of a complex singlet extended Standard Model, Phys. Rev. D 92 (2015) 025024 [arXiv:1411.4048] [INSPIRE].
  70. [70]
    P. Bechtle et al., HiggsBounds − 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].
  71. [71]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  72. [72]
    I.P. Ivanov and J.P. Silva, Tree-level metastability bounds for the most general two Higgs doublet model, Phys. Rev. D 92 (2015) 055017 [arXiv:1507.05100] [INSPIRE].
  73. [73]
    H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].
  74. [74]
    O. Deschamps, S. Descotes-Genon, S. Monteil, V. Niess, S. T’Jampens and V. Tisserand, The Two Higgs Doublet of Type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].
  75. [75]
    F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].
  76. [76]
    T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X}_s\gamma \) in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].
  77. [77]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on M H± in the Two-Higgs-Doublet Model, Eur. Phys. J. C 77 (2017) 201 [arXiv:1702.04571] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  80. [80]
    ATLAS collaboration, Search for heavy Higgs bosons A/H decaying to a top-quark pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2016-073 (2016).
  81. [81]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  82. [82]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi Bento: Beyond NNLO and the heavy-top limit, Comput. Phys. Commun. 212 (2017) 239 [arXiv:1605.03190] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    P. Hafliger and M. Spira, Associated Higgs boson production with heavy quarks in e + e collisions: SUSY-QCD corrections, Nucl. Phys. B 719 (2005) 35 [hep-ph/0501164] [INSPIRE].
  84. [84]
    S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].ADSGoogle Scholar
  85. [85]
    ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  86. [86]
    T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [Erratum ibid. 1604 (2016) 161] [arXiv:1311.4704] [INSPIRE].
  87. [87]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, A precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].
  88. [88]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  89. [89]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].
  90. [90]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].
  91. [91]
    U. Ellwanger and C. Hugonie, NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [INSPIRE].
  92. [92]
    D. Das, U. Ellwanger and A.M. Teixeira, NMSDECAY: A Fortran Code for Supersymmetric Particle Decays in the Next-to-Minimal Supersymmetric Standard Model, Comput. Phys. Commun. 183 (2012) 774 [arXiv:1106.5633] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    M. Mühlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].
  94. [94]
    G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].
  95. [95]
    J. Baglio et al., NMSSMCALC: A Program Package for the Calculation of Loop-Corrected Higgs Boson Masses and Decay Widths in the (Complex) NMSSM, Comput. Phys. Commun. 185 (2014) 3372 [arXiv:1312.4788] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  97. [97]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  98. [98]
    M. Spira, HIGLU: A program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
  99. [99]
    P.M. Ferreira, R. Guedes, M.O.P. Sampaio and R. Santos, Wrong sign and symmetric limits and non-decoupling in 2HDMs, JHEP 12 (2014) 067 [arXiv:1409.6723] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    ATLAS collaboration, Search for charged Higgs bosons in the τ +jets final state with pp collision data recorded at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-090 [INSPIRE].
  101. [101]
    CMS collaboration, Updated search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-HIG-12-052 [INSPIRE].
  102. [102]
    ATLAS collaboration, Summary of the searches for squarks and gluinos using \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS experiment at the LHC, JHEP 10 (2015) 054 [arXiv:1507.05525] [INSPIRE].
  103. [103]
    ATLAS collaboration, Search for top squarks in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 94 (2016) 052009 [arXiv:1606.03903] [INSPIRE].
  104. [104]
    ATLAS collaboration, Search for bottom squark pair production in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 547 [arXiv:1606.08772] [INSPIRE].
  105. [105]
    M. Mühlleitner and E. Popenda, Light Stop Decay in the MSSM with Minimal Flavour Violation, JHEP 04 (2011) 095 [arXiv:1102.5712] [INSPIRE].CrossRefGoogle Scholar
  106. [106]
    R. Gröber, M.M. Mühlleitner, E. Popenda and A. Wlotzka, Light Stop Decays: Implications for LHC Searches, Eur. Phys. J. C 75 (2015) 420 [arXiv:1408.4662] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    R. Gröber, M. Mühlleitner, E. Popenda and A. Wlotzka, Light stop decays into \( Wb{\tilde{\chi}}_1^0 \) near the kinematic threshold, Phys. Lett. B 747 (2015) 144 [arXiv:1502.05935] [INSPIRE].
  108. [108]
    ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 510 [Erratum ibid. C 76 (2016)153] [arXiv:1506.08616] [INSPIRE].
  109. [109]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  110. [110]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  111. [111]
    ATLAS collaboration, Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 208 [arXiv:1501.07110] [INSPIRE].
  112. [112]
    F. Domingo and G. Weiglein, NMSSM interpretations of the observed Higgs signal, JHEP 04 (2016) 095 [arXiv:1509.07283] [INSPIRE].ADSGoogle Scholar
  113. [113]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Alignment limit of the NMSSM Higgs sector, Phys. Rev. D 93 (2016) 035013 [arXiv:1510.09137] [INSPIRE].
  114. [114]
    CMS collaboration, Combined search for anomalous pseudoscalar HVV couplings in \( VH\left(H\to b\overline{b}\right) \) production and HVV decay, Phys. Lett. B 759 (2016) 672 [arXiv:1602.04305] [INSPIRE].
  115. [115]
    ATLAS collaboration, Test of CP Invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector, Eur. Phys. J. C 76 (2016) 658 [arXiv:1602.04516] [INSPIRE].
  116. [116]
    M. Mühlleitner, J.C. Romão, R. Santos, J.P. Silva and J. Wittbrodt, to appear.Google Scholar
  117. [117]
    P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [INSPIRE].ADSGoogle Scholar
  118. [118]
    S.F. King, M. Mühlleitner, R. Nevzorov and K. Walz, Natural NMSSM Higgs Bosons, Nucl. Phys. B 870 (2013) 323 [arXiv:1211.5074] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  119. [119]
    CMS collaboration, Search for new diboson resonances in the dilepton + jets final state at \( \sqrt{s}=13 \) TeV with 2016 data,CMS-PAS-HIG-16-034 [INSPIRE].
  120. [120]
    ATLAS collaboration, Search for Minimal Supersymmetric Standard Model Higgs Bosons H/A in the τ τ final state in up to 13.3 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS Detector, ATLAS-CONF-2016-085 [INSPIRE].
  121. [121]
    CMS collaboration, Search for a neutral MSSM Higgs boson decaying into τ τ with 12.9 fb−1 of data at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-037 [INSPIRE].
  122. [122]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].
  123. [123]
    J.F. Gunion, H.E. Haber and J. Wudka, Sum rules for Higgs bosons, Phys. Rev. D 43 (1991) 904 [INSPIRE].ADSGoogle Scholar
  124. [124]
    B. Grzadkowski, J.F. Gunion and J. Kalinowski, Finding the CP-violating Higgs bosons at e + e colliders, Phys. Rev. D 60 (1999) 075011 [hep-ph/9902308] [INSPIRE].
  125. [125]
    R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs Sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    T. Plehn and M. Rauch, Higgs Couplings after the Discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].CrossRefGoogle Scholar
  128. [128]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP 11 (2014) 039 [arXiv:1403.1582] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings at a Linear Collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    ECFA/DESY LC Physics Working Group collaboration, J.A. Aguilar-Saavedra et al., TESLA: The superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e + e linear collider, hep-ph/0106315 [INSPIRE].
  131. [131]
    CLIC Physics Working Group collaboration, E. Accomando et al., Physics at the CLIC multi-TeV linear collider, in proceedings of the 11th International Conference on Hadron spectroscopy (Hadron 2005), Rio de Janeiro, Brazil, August 21-26, 2005, hep-ph/0412251 [INSPIRE].
  132. [132]
    ILC collaboration, G. Aarons et al., International Linear Collider Reference Design Report Volume 2: Physics at the ILC, arXiv:0709.1893 [INSPIRE].
  133. [133]
    H. Baer et al., The International Linear Collider Technical Design Report — Volume 2: Physics, arXiv:1306.6352 [INSPIRE].
  134. [134]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  135. [135]
    LHC Higgs Cross section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  136. [136]
    A. Arhrib and R. Benbrik, Searching for a CP-odd Higgs via a pair of gauge bosons at the LHC, hep-ph/0610184 [INSPIRE].
  137. [137]
    W. Bernreuther, P. Gonzalez and M. Wiebusch, Pseudoscalar Higgs Bosons at the LHC: Production and Decays into Electroweak Gauge Bosons Revisited, Eur. Phys. J. C 69 (2010) 31 [arXiv:1003.5585] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    J.L. Diaz-Cruz, C.G. Honorato, J.A. Orduz-Ducuara and M.A. Perez, One-loop decays A 0ZZ, Zγ, γγ within the 2HDM and its search at the LHC, Phys. Rev. D 90 (2014) 095019 [arXiv:1403.7541] [INSPIRE].
  139. [139]
    S.Y. Choi, D.J. Miller, M.M. Mühlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].
  140. [140]
    D.J. Miller, S.Y. Choi, B. Eberle, M.M. Mühlleitner and P.M. Zerwas, Measuring the spin of the Higgs boson, Phys. Lett. B 505 (2001) 149 [hep-ph/0102023] [INSPIRE].
  141. [141]
    R.M. Godbole, D.J. Miller and M.M. Mühlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].ADSCrossRefGoogle Scholar
  142. [142]
    S. Berge, W. Bernreuther and J. Ziethe, Determining the CP parity of Higgs bosons at the LHC in their tau decay channels, Phys. Rev. Lett. 100 (2008) 171605 [arXiv:0801.2297] [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    S. Berge and W. Bernreuther, Determining the CP parity of Higgs bosons at the LHC in the tau to 1-prong decay channels, Phys. Lett. B 671 (2009) 470 [arXiv:0812.1910] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    S. Berge, W. Bernreuther, B. Niepelt and H. Spiesberger, How to pin down the CP quantum numbers of a Higgs boson in its tau decays at the LHC, Phys. Rev. D 84 (2011) 116003 [arXiv:1108.0670] [INSPIRE].ADSGoogle Scholar
  145. [145]
    S. Berge, W. Bernreuther and H. Spiesberger, Higgs CP properties using the τ decay modes at the ILC, Phys. Lett. B 727 (2013) 488 [arXiv:1308.2674] [INSPIRE].ADSCrossRefGoogle Scholar
  146. [146]
    S. Berge, W. Bernreuther and S. Kirchner, Determination of the Higgs CP-mixing angle in the tau decay channels at the LHC including the Drell-Yan background, Eur. Phys. J. C 74 (2014) 3164 [arXiv:1408.0798] [INSPIRE].ADSCrossRefGoogle Scholar
  147. [147]
    H.E. Haber, Future Higgs Studies: A Theorist’s Outlook, arXiv:1701.01922 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Margarete Mühlleitner
    • 1
  • Marco O. P. Sampaio
    • 2
  • Rui Santos
    • 3
    • 4
    • 5
  • Jonas Wittbrodt
    • 1
    • 6
  1. 1.Institute for Theoretical PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Departamento de FísicaUniversidade de Aveiro and CIDMAAveiroPortugal
  3. 3.ISEL — Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de LisboaLisboaPortugal
  4. 4.Centro de Física Teórica e Computacional, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  5. 5.LIP, Departamento de FísicaUniversidade do MinhoBragaPortugal
  6. 6.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations