Advertisement

Factorization and resummation for massive quark effects in exclusive Drell-Yan

  • Piotr Pietrulewicz
  • Daniel SamitzEmail author
  • Anne Spiering
  • Frank J. Tackmann
Open Access
Regular Article - Theoretical Physics

Abstract

Exclusive differential spectra in color-singlet processes at hadron colliders are benchmark observables that have been studied to high precision in theory and experiment. We present an effective-theory framework utilizing soft-collinear effective theory to incorporate massive (bottom) quark effects into resummed differential distributions, accounting for both heavy-quark initiated primary contributions to the hard scattering process as well as secondary effects from gluons splitting into heavy-quark pairs. To be specific, we focus on the Drell-Yan process and consider the vector-boson transverse momentum, q T , and beam thrust, \( \mathcal{T} \), as examples of exclusive observables. The theoretical description depends on the hierarchy between the hard, mass, and the q T (or \( \mathcal{T} \)) scales, ranging from the decoupling limit q T m to the massless limit mq T . The phenomenologically relevant intermediate regime mq T requires in particular quark-mass dependent beam and soft functions. We calculate all ingredients for the description of primary and secondary mass effects required at NNLL resummation order (combining NNLL evolution with NNLO boundary conditions) for q T and \( \mathcal{T} \) in all relevant hierarchies. For the q T distribution the rapidity divergences are different from the massless case and we discuss features of the resulting rapidity evolution. Our results will allow for a detailed investigation of quark-mass effects in the ratio of W and Z boson spectra at small q T , which is important for the precision measurement of the W-boson mass at the LHC.

Keywords

Jets QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Measurement of the Transverse Momentum Distribution of W Bosons in pp Collisions at \( \sqrt{s}=7 \) TeV with the ATLAS Detector, Phys. Rev. D 85 (2012) 012005 [arXiv:1108.6308] [INSPIRE].
  2. [2]
    CMS collaboration, Measurement of the Rapidity and Transverse Momentum Distributions of Z Bosons in pp Collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 85 (2012) 032002 [arXiv:1110.4973] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of the Z/γ * boson transverse momentum distribution in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2014) 145 [arXiv:1406.3660] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 187 [arXiv:1504.03511] [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurement of the transverse momentum and ϕ η* distributions of Drell-Yan lepton pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].
  6. [6]
    CMS collaboration, Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2017) 096 [arXiv:1606.05864] [INSPIRE].
  7. [7]
    V. Buge, C. Jung, G. Quast, A. Ghezzi, M. Malberti and T. Tabarelli de Fatis, Prospects for the precision measurement of the W mass with the CMS detector at the LHC, J. Phys. G 34 (2007) N193 [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    ATLAS collaboration, Re-evaluation of the LHC potential for the measurement of Mw, Eur. Phys. J. C 57 (2008) 627 [arXiv:0805.2093] [INSPIRE].
  9. [9]
    CMS collaboration, W-like measurement of the Z boson mass using dimuon events collected in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-SMP-14-007 (2016).
  10. [10]
    ATLAS collaboration, Studies of theoretical uncertainties on the measurement of the mass of the W boson at the LHC, ATL-PHYS-PUB-2014-015 (2014).
  11. [11]
    ATLAS collaboration, Measurement of the W-boson mass in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1701.07240 [INSPIRE].
  12. [12]
    M.A.G. Aivazis, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 1. General formalism and kinematics of charged current and neutral current production processes, Phys. Rev. D 50 (1994) 3085 [hep-ph/9312318] [INSPIRE].
  13. [13]
    M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50 (1994) 3102 [hep-ph/9312319] [INSPIRE].
  14. [14]
    R.S. Thorne and R.G. Roberts, An Ordered analysis of heavy flavor production in deep inelastic scattering, Phys. Rev. D 57 (1998) 6871 [hep-ph/9709442] [INSPIRE].
  15. [15]
    S. Kretzer and I. Schienbein, Heavy quark initiated contributions to deep inelastic structure functions, Phys. Rev. D 58 (1998) 094035 [hep-ph/9805233] [INSPIRE].
  16. [16]
    J.C. Collins, Hard scattering factorization with heavy quarks: A General treatment, Phys. Rev. D 58 (1998) 094002 [hep-ph/9806259] [INSPIRE].
  17. [17]
    S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Bonvini, A.S. Papanastasiou and F.J. Tackmann, Resummation and matching of b-quark mass effects in \( b\overline{b}H \) production, JHEP 11 (2015) 196 [arXiv:1508.03288] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P.M. Nadolsky, N. Kidonakis, F.I. Olness and C.P. Yuan, Resummation of transverse momentum and mass logarithms in DIS heavy quark production, Phys. Rev. D 67 (2003) 074015 [hep-ph/0210082] [INSPIRE].
  20. [20]
    S. Berge, P.M. Nadolsky and F.I. Olness, Heavy-flavor effects in soft gluon resummation for electroweak boson production at hadron colliders, Phys. Rev. D 73 (2006) 013002 [hep-ph/0509023] [INSPIRE].
  21. [21]
    A. Belyaev, P.M. Nadolsky and C.P. Yuan, Transverse momentum resummation for Higgs boson produced viabb fusion at hadron colliders, JHEP 04 (2006) 004 [hep-ph/0509100] [INSPIRE].
  22. [22]
    S. Gritschacher, A.H. Hoang, I. Jemos and P. Pietrulewicz, Secondary Heavy Quark Production in Jets through Mass Modes, Phys. Rev. D 88 (2013) 034021 [arXiv:1302.4743] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P. Pietrulewicz, S. Gritschacher, A.H. Hoang, I. Jemos and V. Mateu, Variable Flavor Number Scheme for Final State Jets in Thrust, Phys. Rev. D 90 (2014) 114001 [arXiv:1405.4860] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A.H. Hoang, P. Pietrulewicz and D. Samitz, Variable Flavor Number Scheme for Final State Jets in DIS, Phys. Rev. D 93 (2016) 034034 [arXiv:1508.04323] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Butenschoen, B. Dehnadi, A.H. Hoang, V. Mateu, M. Preisser and I.W. Stewart, Top Quark Mass Calibration for Monte Carlo Event Generators, Phys. Rev. Lett. 117 (2016) 232001 [arXiv:1608.01318] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    B. Dehnadi, Heavy quark mass determinations with sum rules and jets, Ph.D. Thesis, Vienna University, Vienna Austria (2016).Google Scholar
  27. [27]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  28. [28]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  29. [29]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  30. [30]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  31. [31]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].
  33. [33]
    J.C. Collins and D.E. Soper, Back-To-Back Jets: Fourier Transform from B to K-Transverse, Nucl. Phys. B 197 (1982) 446 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Balázs and C.P. Yuan, Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev. D 56 (1997) 5558 [hep-ph/9704258] [INSPIRE].
  36. [36]
    C. Balázs and C.P. Yuan, Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 478 (2000) 192 [hep-ph/0001103] [INSPIRE].
  37. [37]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    T. Becher and M. Neubert, Drell-Yan Production at Small q T , Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low q T And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Beam Thrust Cross Section for Drell-Yan at NNLL Order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs Production with a Central Jet Veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Fleming, A.K. Leibovich and T. Mehen, Resummation of Large Endpoint Corrections to Color-Octet J/ψ Photoproduction, Phys. Rev. D 74 (2006) 114004 [hep-ph/0607121] [INSPIRE].
  47. [47]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2195 [arXiv:1209.0158] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Gehrmann, T. Lubbert and L.L. Yang, Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case, Phys. Rev. Lett. 109 (2012) 242003 [arXiv:1209.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    T. Lübbert, J. Oredsson and M. Stahlhofen, Rapidity renormalized TMD soft and beam functions at two loops, JHEP 03 (2016) 168 [arXiv:1602.01829] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y. Li, D. Neill and H.X. Zhu, An Exponential Regulator for Rapidity Divergences, Submitted to: Phys. Rev. D (2016) [arXiv:1604.00392] [INSPIRE].
  52. [52]
    Y. Li and H.X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A.A. Vladimirov, Correspondence between Soft and Rapidity Anomalous Dimensions, Phys. Rev. Lett. 118 (2017) 062001 [arXiv:1610.05791] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M.A. Ebert and F.J. Tackmann, Resummation of Transverse Momentum Distributions in Distribution Space, JHEP 02 (2017) 110 [arXiv:1611.08610] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    P.F. Monni, E. Re and P. Torrielli, Higgs Transverse-Momentum Resummation in Direct Space, Phys. Rev. Lett. 116 (2016) 242001 [arXiv:1604.02191] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A.H. Hoang, A. Pathak, P. Pietrulewicz and I.W. Stewart, Hard Matching for Boosted Tops at Two Loops, JHEP 12 (2015) 059 [arXiv:1508.04137] [INSPIRE].ADSGoogle Scholar
  57. [57]
    I.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    J.R. Gaunt, Glauber Gluons and Multiple Parton Interactions, JHEP 07 (2014) 110 [arXiv:1405.2080] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Zeng, Drell-Yan process with jet vetoes: breaking of generalized factorization, JHEP 10 (2015) 189 [arXiv:1507.01652] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Alioli et al., Combining Higher-Order Resummation with Multiple NLO Calculations and Parton Showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann and J.R. Walsh, Drell-Yan production at NNLL’+NNLO matched to parton showers, Phys. Rev. D 92 (2015) 094020 [arXiv:1508.01475] [INSPIRE].ADSGoogle Scholar
  62. [62]
    S. Alioli, C.W. Bauer, S. Guns and F.J. Tackmann, Underlying event sensitive observables in Drell-Yan production using GENEVA, Eur. Phys. J. C 76 (2016) 614 [arXiv:1605.07192] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].ADSGoogle Scholar
  64. [64]
    T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [INSPIRE].
  65. [65]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].
  66. [66]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The Quark Beam Function at NNLL, JHEP 09 (2010) 005 [arXiv:1002.2213] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    J.R. Gaunt, M. Stahlhofen and F.J. Tackmann, The Quark Beam Function at Two Loops, JHEP 04 (2014) 113 [arXiv:1401.5478] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Gaunt, M. Stahlhofen and F.J. Tackmann, The Gluon Beam Function at Two Loops, JHEP 08 (2014) 020 [arXiv:1405.1044] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    D. Kang, O.Z. Labun and C. Lee, Equality of hemisphere soft functions for e + e , DIS and pp collisions at \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Lett. B 748 (2015) 45 [arXiv:1504.04006] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
  71. [71]
    P.F. Monni, T. Gehrmann and G. Luisoni, Two-Loop Soft Corrections and Resummation of the Thrust Distribution in the Dijet Region, JHEP 08 (2011) 010 [arXiv:1105.4560] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].ADSGoogle Scholar
  73. [73]
    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross Sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization and the Soft Substructure of Jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    P. Pietrulewicz, F.J. Tackmann and W.J. Waalewijn, Factorization and Resummation for Generic Hierarchies between Jets, JHEP 08 (2016) 002 [arXiv:1601.05088] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    B.A. Kniehl, Two Loop QED Vertex Correction From Virtual Heavy Fermions, Phys. Lett. B 237 (1990) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Hoang, Applications of two loop calculations in the standard model and its minimal supersymmetric extension, Ph.D. Thesis, Universität Karlsruhe, Karlsruhe Germany (1995).Google Scholar
  78. [78]
    B.A. Kniehl and J.H. Kuhn, QCD Corrections to the Z Decay Rate, Nucl. Phys. B 329 (1990) 547 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    R.J. Gonsalves, C.-M. Hung and J. Pawlowski, Heavy quark triangle diagram contributions to Z boson production in hadron collisions, Phys. Rev. D 46 (1992) 4930 [INSPIRE].ADSGoogle Scholar
  80. [80]
    W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: Anomaly contributions, Nucl. Phys. B 723 (2005) 91 [hep-ph/0504190] [INSPIRE].
  81. [81]
    S. Catani, S. Dittmaier and Z. Trócsányi, One loop singular behavior of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett. B 500 (2001) 149 [hep-ph/0011222] [INSPIRE].
  82. [82]
    Z.-B. Kang, F. Ringer and I. Vitev, Effective field theory approach to open heavy flavor production in heavy-ion collisions, JHEP 03 (2017) 146 [arXiv:1610.02043] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    C.W. Bauer and E. Mereghetti, Heavy Quark Fragmenting Jet Functions, JHEP 04 (2014) 051 [arXiv:1312.5605] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [INSPIRE].
  85. [85]
    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function F 2(x, Q 2) and the anomalous dimension, Nucl. Phys. B 890 (2014) 48 [arXiv:1409.1135] [INSPIRE].ADSzbMATHGoogle Scholar
  86. [86]
    J. Ablinger et al., The 3-Loop Non-Singlet Heavy Flavor Contributions and Anomalous Dimensions for the Structure Function F 2(x, Q 2) and Transversity, Nucl. Phys. B 886 (2014)733 [arXiv:1406.4654] [INSPIRE].
  87. [87]
    J. Ablinger et al., The Transition Matrix Element A gq(N) of the Variable Flavor Number Scheme at O(α s3), Nucl. Phys. B 882 (2014) 263 [arXiv:1402.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    S. Gritschacher, A. Hoang, I. Jemos and P. Pietrulewicz, Two loop soft function for secondary massive quarks, Phys. Rev. D 89 (2014) 014035 [arXiv:1309.6251] [INSPIRE].ADSGoogle Scholar
  89. [89]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    T. Matsuura and W.L. van Neerven, Second Order Logarithmic Corrections to the Drell-Yan Cross-section, Z. Phys. C 38 (1988) 623 [INSPIRE].ADSGoogle Scholar
  91. [91]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading order, JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    I.Z. Rothstein, Factorization, power corrections and the pion form-factor, Phys. Rev. D 70 (2004) 054024 [hep-ph/0301240] [INSPIRE].
  93. [93]
    A.K. Leibovich, Z. Ligeti and M.B. Wise, Comment on quark masses in SCET, Phys. Lett. B 564 (2003) 231 [hep-ph/0303099] [INSPIRE].
  94. [94]
    S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].
  95. [95]
    A. Jain, M. Procura and W.J. Waalewijn, Fully-Unintegrated Parton Distribution and Fragmentation Functions at Perturbative k T, JHEP 04 (2012) 132 [arXiv:1110.0839] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    G. Lustermans, W.J. Waalewijn and L. Zeune, Joint transverse momentum and threshold resummation beyond NLL, Phys. Lett. B 762 (2016) 447 [arXiv:1605.02740] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Piotr Pietrulewicz
    • 1
  • Daniel Samitz
    • 2
    Email author
  • Anne Spiering
    • 3
  • Frank J. Tackmann
    • 1
  1. 1.Theory Group, Deutsches Elektronen-Synchrotron (DESY)HamburgGermany
  2. 2.Faculty of PhysicsUniversity of ViennaWienAustria
  3. 3.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations