Advertisement

2D CFT partition functions at late times

  • Ethan Dyer
  • Guy Gur-AriEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the late time behavior of the analytically continued partition function Z(β + it)Z(βit) in holographic 2d CFTs. This is a probe of information loss in such theories and in their holographic duals. We show that each Virasoro character decays in time, and so information is not restored at the level of individual characters. We identify a universal decaying contribution at late times, and conjecture that it describes the behavior of generic chaotic 2d CFTs out to times that are exponentially large in the central charge. It was recently suggested that at sufficiently late times one expects a crossover to random matrix behavior. We estimate an upper bound on the crossover time, which suggests that the decay is followed by a parametrically long period of late time growth. Finally, we discuss gravitationally-motivated integrable theories and show how information is restored at late times by a series of characters. This hints at a possible bulk mechanism, where information is restored by an infinite sum over non-perturbative saddles.

Keywords

AdS-CFT Correspondence Black Holes Conformal Field Theory Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.L.F. Barbon and E. Rabinovici, Very long time scales and black hole thermal equilibrium, JHEP 11 (2003) 047 [hep-th/0308063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.L.F. Barbon and E. Rabinovici, Long time scales and eternal black holes, Fortsch. Phys. 52 (2004) 642 [hep-th/0403268] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Cardy, Thermalization and revivals after a quantum quench in conformal field theory, Phys. Rev. Lett. 112 (2014) 220401 [arXiv:1403.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Guhr, A. Müller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: common concepts, Phys. Rept. 299 (1998) 189 [cond-mat/9707301] [INSPIRE].
  6. [6]
    Y.V. Fyodorov, Introduction to the random matrix theory: Gaussian unitary ensemble and beyond, London Math. Soc. Lect. Note Ser. 322 (2005) 31.MathSciNetzbMATHGoogle Scholar
  7. [7]
    K. Papadodimas and S. Raju, Local operators in the eternal black hole, Phys. Rev. Lett. 115 (2015) 211601 [arXiv:1502.06692] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  9. [9]
    A simple model of quantum holography, talk given at the KITP Program: entanglement in strongly-correlated quantum matter, April 6-July 2, University of California, U.S.A. (2015), part 1 and part 2 available online.Google Scholar
  10. [10]
    J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    G. Festuccia and H. Liu, The arrow of time, black holes and quantum mixing of large-N Yang-Mills theories, JHEP 12 (2007) 027 [hep-th/0611098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    N. Iizuka and J. Polchinski, A matrix model for black hole thermalization, JHEP 10 (2008) 028 [arXiv:0801.3657] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Kleban, M. Porrati and R. Rabadán, Poincaré recurrences and topological diversity, JHEP 10 (2004) 030 [hep-th/0407192] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black hole collapse in the 1/c expansion, JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3 /CFT 2, JHEP 05 (2016) 109 [arXiv:1603.08925] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A.L. Fitzpatrick and J. Kaplan, On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles, JHEP 04 (2017) 072 [arXiv:1609.07153] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    H. Chen, C. Hussong, J. Kaplan and D. Li, A numerical approach to virasoro blocks and the information paradox, arXiv:1703.09727 [INSPIRE].
  20. [20]
    A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    C.A. Keller and A. Maloney, Poincaré Series, 3D gravity and CFT spectroscopy, JHEP 02 (2015) 080 [arXiv:1407.6008] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry protected topological states, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Prange, The spectral form factor is not self-averaging, Phys. Rev. Lett. 78 (1997) 2280.ADSCrossRefGoogle Scholar
  24. [24]
    T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Henneaux and C. Teitelboim, Asymptotically Anti-de Sitter spaces, Commun. Math. Phys. 98 (1985) 391 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    S.W. Hawking and D.N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
  30. [30]
    W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    D. Gaiotto and X. Yin, Genus two partition functions of extremal conformal field theories, JHEP 08 (2007) 029 [arXiv:0707.3437] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M.R. Gaberdiel, Constraints on extremal self-dual CFTs, JHEP 11 (2007) 087 [arXiv:0707.4073] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    M.R. Gaberdiel, S. Gukov, C.A. Keller, G.W. Moore and H. Ooguri, Extremal N = (2, 2) 2D conformal field theories and constraints of modularity, Commun. Num. Theor. Phys. 2 (2008) 743 [arXiv:0805.4216] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    N. Benjamin, E. Dyer, A.L. Fitzpatrick and S. Kachru, An extremal \( \mathcal{N}=2 \) superconformal field theory, J. Phys. A 48 (2015) 495401 [arXiv:1507.00004] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  35. [35]
    S.M. Harrison, Extremal chiral \( \mathcal{N}=4 \) SCFT with c = 24, JHEP 11 (2016) 006 [arXiv:1602.06930] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    N. Benjamin, E. Dyer, A.L. Fitzpatrick, A. Maloney and E. Perlmutter, Small black holes and near-extremal CFTs, JHEP 08 (2016) 023 [arXiv:1603.08524] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    J.-B. Bae, K. Lee and S. Lee, Bootstrapping pure quantum gravity in AdS 3, arXiv:1610.05814 [INSPIRE].
  38. [38]
    H. Rademacher, A convergent series for the partition function p(n), Proc. Natl. Acad. Sci. U.S.A. 23 (1937) 78.ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    H. Rademacher and H.S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. Math. 39 (1938) 433.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail, hep-th/0005003 [INSPIRE].
  41. [41]
    J. Manschot and G.W. Moore, A modern Farey tail, Commun. Num. Theor. Phys. 4 (2010) 103 [arXiv:0712.0573] [INSPIRE].CrossRefzbMATHGoogle Scholar
  42. [42]
    F.M. Haehl and M. Rangamani, Permutation orbifolds and holography, JHEP 03 (2015) 163 [arXiv:1412.2759] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    A. Belin, C.A. Keller and A. Maloney, String universality for permutation orbifolds, Phys. Rev. D 91 (2015) 106005 [arXiv:1412.7159] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    N. Benjamin, M.C.N. Cheng, S. Kachru, G.W. Moore and N.M. Paquette, Elliptic genera and 3D gravity, Annales Henri Poincaré 17 (2016) 2623 [arXiv:1503.04800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    N. Benjamin, S. Kachru, C.A. Keller and N.M. Paquette, Emergent space-time and the supersymmetric index, JHEP 05 (2016) 158 [arXiv:1512.00010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    N. Benjamin, A refined count of BPS states in the D1/D5 system, JHEP 06 (2017) 028 [arXiv:1610.07607] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  48. [48]
    E. Perlmutter, Bounding the space of holographic CFTs with chaos, JHEP 10 (2016) 069 [arXiv:1602.08272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    A. Strominger, A simple proof of the chiral gravity conjecture, arXiv:0808.0506 [INSPIRE].
  54. [54]
    A. Maloney, W. Song and A. Strominger, Chiral gravity, log gravity and extremal CFT, Phys. Rev. D 81 (2010) 064007 [arXiv:0903.4573] [INSPIRE].
  55. [55]
    P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations