Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

Abstract

We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R 2 μν coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    D.N. Page and C.D. Geilker, Indirect evidence for quantum gravity, Phys. Rev. Lett. 47 (1981) 979 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    G. ’t Hooft and M. Veltman, One loop divergencies in the theory of gravitation, Annales Poincare Phys. Theor. A 20 (1974) 69.

  3. [3]

    S. Deser and P. van Nieuwenhuizen, One loop divergences of quantized Einstein-Maxwell fields, Phys. Rev. D 10 (1974) 401 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein system, Phys. Rev. D 10 (1974) 411 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. [5]

    S. Deser and P. van Nieuwenhuizen, Nonrenormalizability of the quantized Einstein-Maxwell system, Phys. Rev. Lett. 32 (1974) 245 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    S. Deser, H.-S. Tsao and P. van Nieuwenhuizen, One loop divergences of the Einstein Yang-Mills system, Phys. Rev. D 10 (1974) 3337 [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    M.H. Goroff and A. Sagnotti, Quantum gravity at two loops, Phys. Lett. 160B (1985) 81 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A.E.M. van de Ven, Two loop quantum gravity, Nucl. Phys. B 378 (1992) 309 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. [10]

    K.S. Stelle, Classical gravity with higher derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    G. Narain and R. Anishetty, Short distance freedom of quantum gravity, Phys. Lett. B 711 (2012) 128 [arXiv:1109.3981] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    G. Narain and R. Anishetty, Unitary and renormalizable theory of higher derivative gravity, J. Phys. Conf. Ser. 405 (2012) 012024 [arXiv:1210.0513] [INSPIRE].

    Article  Google Scholar 

  13. [13]

    S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity, S.W. Hawking and W. and Israel eds., Cambridge University Press, Cambridge U.K. (1979).

  14. [14]

    R. Percacci, Asymptotic safety, arXiv:0709.3851 [INSPIRE].

  15. [15]

    R. Percacci, A Short introduction to asymptotic safety, in the proceedings ofTime and matter, October 4–8, Budva, Montenegro (2011), arXiv:1110.6389 [INSPIRE].

  16. [16]

    S. Nagy, Lectures on renormalization and asymptotic safety, Annals Phys. 350 (2014) 310 [arXiv:1211.4151] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    H. Kawai and M. Ninomiya, Renormalization group and quantum gravity, Nucl. Phys. B 336 (1990) 115 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    L.P. Kadanoff, Scaling laws for Ising models near T c , Physics 2 (1966) 263.

    Google Scholar 

  19. [19]

    K.G. Wilson and J.B. Kogut, The Renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    C. Bagnuls and C. Bervillier, Exact renormalization group equations. An introductory review, Phys. Rept. 348 (2001) 91 [hep-th/0002034] [INSPIRE].

  21. [21]

    J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363 (2002) 223 [hep-ph/0005122] [INSPIRE].

  22. [22]

    K. Aoki, Introduction to the nonperturbative renormalization group and its recent applications, Int. J. Mod. Phys. B 14 (2000) 1249 [INSPIRE].

    ADS  MATH  Google Scholar 

  23. [23]

    J. Polonyi, Lectures on the functional renormalization group method, Central Eur. J. Phys. 1 (2003) 1 [hep-th/0110026] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007) 2831 [hep-th/0512261] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  25. [25]

    H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys. 852 (2012) 287 [hep-ph/0611146].

  26. [26]

    O.J. Rosten, Fundamentals of the exact renormalization group, Phys. Rept. 511 (2012) 177 [arXiv:1003.1366] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. [28]

    D. Dou and R. Percacci, The running gravitational couplings, Class. Quant. Grav. 15 (1998) 3449 [hep-th/9707239] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    W. Souma, Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys. 102 (1999) 181 [hep-th/9907027] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. [31]

    O. Lauscher and M. Reuter, Is quantum Einstein gravity nonperturbatively renormalizable?, Class. Quant. Grav. 19 (2002) 483 [hep-th/0110021] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  32. [32]

    O. Lauscher and M. Reuter, Towards nonperturbative renormalizability of quantum Einstein gravity, Int. J. Mod. Phys. A 17 (2002) 993 [hep-th/0112089] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. [34]

    D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    R. Percacci and D. Perini, Should we expect a fixed point for Newton’s constant?, Class. Quant. Grav. 21 (2004) 5035 [hep-th/0401071] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  36. [36]

    A. Bonanno and M. Reuter, Proper time flow equation for gravity, JHEP 02 (2005) 035 [hep-th/0410191] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    P. Fischer and D.F. Litim, Fixed points of quantum gravity in extra dimensions, Phys. Lett. B 638 (2006) 497 [hep-th/0602203] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  38. [38]

    E. Manrique, S. Rechenberger and F. Saueressig, Asymptotically safe lorentzian gravity, Phys. Rev. Lett. 106 (2011) 251302 [arXiv:1102.5012] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    U. Harst and M. Reuter, The ‘Tetrad only’ theory space: nonperturbative renormalization flow and asymptotic safety, JHEP 05 (2012) 005 [arXiv:1203.2158] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic safety of quantum gravity, Phys. Rev. D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. [41]

    K. Falls, Renormalization of Newton’s constant, Phys. Rev. D 92 (2015) 124057 [arXiv:1501.05331] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. [42]

    H. Gies, B. Knorr and S. Lippoldt, Generalized parametrization dependence in quantum gravity, Phys. Rev. D 92 (2015) 084020 [arXiv:1507.08859] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. [43]

    J. Biemans, A. Platania and F. Saueressig, Quantum gravity on foliated spacetimes: asymptotically safe and sound, Phys. Rev. D 95 (2017) 086013 [arXiv:1609.04813] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    K. Falls, Physical renormalisation schemes and asymptotic safety in quantum gravity, arXiv:1702.03577 [INSPIRE].

  45. [45]

    R. Percacci and D. Perini, Constraints on matter from asymptotic safety, Phys. Rev. D 67 (2003) 081503 [hep-th/0207033] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    R. Percacci and D. Perini, Asymptotic safety of gravity coupled to matter, Phys. Rev. D 68 (2003) 044018 [hep-th/0304222] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    R. Percacci, Further evidence for a gravitational fixed point, Phys. Rev. D 73 (2006) 041501 [hep-th/0511177] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  48. [48]

    G. Narain and R. Percacci, Renormalization group flow in scalar-tensor theories. I, Class. Quant. Grav. 27 (2010) 075001 [arXiv:0911.0386] [INSPIRE].

  49. [49]

    G. Narain and C. Rahmede, Renormalization group flow in scalar-tensor theories. II, Class. Quant. Grav. 27 (2010) 075002 [arXiv:0911.0394] [INSPIRE].

  50. [50]

    O. Zanusso, L. Zambelli, G.P. Vacca and R. Percacci, Gravitational corrections to Yukawa systems, Phys. Lett. B 689 (2010) 90 [arXiv:0904.0938] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    J.-E. Daum, U. Harst and M. Reuter, Running Gauge Coupling in Asymptotically Safe Quantum Gravity, JHEP 01 (2010) 084 [arXiv:0910.4938] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  52. [52]

    J.E. Daum, U. Harst and M. Reuter, Non-perturbative QEG corrections to the Yang-Mills β-function, Gen. Relativ. Gravit. (2010) [arXiv:1005.1488] [INSPIRE].

  53. [53]

    G.P. Vacca and O. Zanusso, Asymptotic safety in Einstein gravity and scalar-fermion matter, Phys. Rev. Lett. 105 (2010) 231601 [arXiv:1009.1735] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    U. Harst and M. Reuter, QED coupled to QEG, JHEP 05 (2011) 119 [arXiv:1101.6007] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  55. [55]

    A. Eichhorn and H. Gies, Light fermions in quantum gravity, New J. Phys. 13 (2011) 125012 [arXiv:1104.5366] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    S. Folkerts, D.F. Litim and J.M. Pawlowski, Asymptotic freedom of Yang-Mills theory with gravity, Phys. Lett. B 709 (2012) 234 [arXiv:1101.5552] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    A. Eichhorn, Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario, Phys. Rev. D 86 (2012) 105021 [arXiv:1204.0965] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    P. Dona and R. Percacci, Functional renormalization with fermions and tetrads, Phys. Rev. D 87 (2013) 045002 [arXiv:1209.3649] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev. D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    T. Henz, J.M. Pawlowski, A. Rodigast and C. Wetterich, Dilaton quantum gravity, Phys. Lett. B 727 (2013) 298 [arXiv:1304.7743] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    P. Donà, A. Eichhorn and R. Percacci, Consistency of matter models with asymptotically safe quantum gravity, Can. J. Phys. 93 (2015) 988 [arXiv:1410.4411] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    R. Percacci and G.P. Vacca, Search of scaling solutions in scalar-tensor gravity, Eur. Phys. J. C 75 (2015) 188 [arXiv:1501.00888] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    P. Labus, R. Percacci and G.P. Vacca, Asymptotic safety in O(N) scalar models coupled to gravity, Phys. Lett. B 753 (2016) 274 [arXiv:1505.05393] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  64. [64]

    K.-y. Oda and M. Yamada, Non-minimal coupling in Higgs-Yukawa model with asymptotically safe gravity, Class. Quant. Grav. 33 (2016) 125011 [arXiv:1510.03734] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    P. Donà, A. Eichhorn, P. Labus and R. Percacci, Asymptotic safety in an interacting system of gravity and scalar matter, Phys. Rev. D 93 (2016) 044049 [arXiv:1512.01589] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  66. [66]

    A. Eichhorn, A. Held and J.M. Pawlowski, Quantum-gravity effects on a Higgs-Yukawa model, Phys. Rev. D 94 (2016) 104027 [arXiv:1604.02041] [INSPIRE].

    ADS  Google Scholar 

  67. [67]

    T. Henz, J.M. Pawlowski and C. Wetterich, Scaling solutions for dilaton quantum gravity, Phys. Lett. B 769 (2017) 105 [arXiv:1605.01858] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  68. [68]

    A. Eichhorn and S. Lippoldt, Quantum gravity and standard-model-like fermions, Phys. Lett. B 767 (2017) 142 [arXiv:1611.05878] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    J. Biemans, A. Platania and F. Saueressig, Renormalization group fixed points of foliated gravity-matter systems, JHEP 05 (2017) 093 [arXiv:1702.06539] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  70. [70]

    N. Christiansen and A. Eichhorn, An asymptotically safe solution to the U(1) triviality problem, Phys. Lett. B 770 (2017) 154 [arXiv:1702.07724] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative truncation, Phys. Rev. D 66 (2002) 025026 [hep-th/0205062] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  72. [72]

    A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys. A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  73. [73]

    P.F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity, Phys. Rev. D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  74. [74]

    M. Hindmarsh and I.D. Saltas, f(R) gravity from the renormalisation group, Phys. Rev. D 86 (2012) 064029 [arXiv:1203.3957] [INSPIRE].

  75. [75]

    J.A. Dietz and T.R. Morris, Asymptotic safety in the f(R) approximation, JHEP 01 (2013) 108 [arXiv:1211.0955] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  76. [76]

    J.A. Dietz and T.R. Morris, Redundant operators in the exact renormalisation group and in the f(R) approximation to asymptotic safety, JHEP 07 (2013) 064 [arXiv:1306.1223] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  77. [77]

    K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].

  78. [78]

    K. Falls, Asymptotic safety and the cosmological constant, JHEP 01 (2016) 069 [arXiv:1408.0276] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  79. [79]

    A. Eichhorn, The Renormalization Group flow of unimodular f(R) gravity, JHEP 04 (2015) 096 [arXiv:1501.05848] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  80. [80]

    N. Ohta, R. Percacci and G.P. Vacca, Flow equation for f(R) gravity and some of its exact solutions, Phys. Rev. D 92 (2015) 061501 [arXiv:1507.00968] [INSPIRE].

    ADS  Google Scholar 

  81. [81]

    N. Ohta, R. Percacci and G.P. Vacca, Renormalization group equation and scaling solutions for f(R) gravity in exponential parametrization, Eur. Phys. J. C 76 (2016) 46 [arXiv:1511.09393] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    J. Schröder, Aspects of quantum gravity and matter, Ph.D. thesis, Sussex University, U.K. (2015).

  83. [83]

    K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, On de Sitter solutions in asymptotically safe f(R) theories, arXiv:1607.04962 [INSPIRE].

  84. [84]

    K. Falls and N. Ohta, Renormalization group equation for f(R) gravity on hyperbolic spaces, Phys. Rev. D 94 (2016) 084005 [arXiv:1607.08460] [INSPIRE].

    ADS  Google Scholar 

  85. [85]

    L.N. Granda and S.D. Odintsov, Effective average action and nonperturbative renormalization group equation in higher derivative quantum gravity, Grav. Cosmol. 4 (1998) 85 [gr-qc/9801026] [INSPIRE].

  86. [86]

    A. Codello and R. Percacci, Fixed points of higher derivative gravity, Phys. Rev. Lett. 97 (2006) 221301 [hep-th/0607128] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  87. [87]

    D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  88. [88]

    D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in asymptotically safe gravity, Nucl. Phys. B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  89. [89]

    D. Benedetti, P.F. Machado and F. Saueressig, Four-derivative interactions in asymptotically safe gravity, arXiv:0909.3265 [INSPIRE].

  90. [90]

    N. Ohta, β-function and asymptotic safety in three-dimensional higher derivative gravity, Class. Quant. Grav. 29 (2012) 205012 [arXiv:1205.0476] [INSPIRE].

  91. [91]

    N. Ohta and R. Percacci, Higher derivative gravity and asymptotic safety in diverse dimensions, Class. Quant. Grav. 31 (2014) 015024 [arXiv:1308.3398] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  92. [92]

    K. Groh, S. Rechenberger, F. Saueressig and O. Zanusso, Higher derivative gravity from the universal renormalization group machine, PoS(EPS-HEP2011)124 [arXiv:1111.1743] [INSPIRE].

  93. [93]

    H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational two-loop counterterm is asymptotically safe, Phys. Rev. Lett. 116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].

    ADS  Article  Google Scholar 

  94. [94]

    M. Niedermaier and M. Reuter, The asymptotic safety scenario in quantum gravity, Living Rev. Rel. 9 (2006) 5 [INSPIRE].

    MATH  Article  Google Scholar 

  95. [95]

    M. Niedermaier, The asymptotic safety scenario in quantum gravity: an introduction, Class. Quant. Grav. 24 (2007) R171 [gr-qc/0610018] [INSPIRE].

  96. [96]

    M. Reuter and F. Saueressig, Functional renormalization group equations, asymptotic safety and quantum einstein gravity, in First Quantum Geometry and Quantum Gravity School, March 23–April 3, Zakopane, Poland (2007), arXiv:0708.1317 [INSPIRE].

  97. [97]

    A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  98. [98]

    D.F. Litim, Fixed points of quantum gravity and the renormalisation group, arXiv:0810.3675 [INSPIRE].

  99. [99]

    D.F. Litim, Renormalisation group and the Planck scale, Phil. Trans. Roy. Soc. Lond. A 369 (2011) 2759 [arXiv:1102.4624] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  100. [100]

    M. Reuter and F. Saueressig, Quantum Einstein gravity, New J. Phys. 14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  101. [101]

    S. Falkenberg and S.D. Odintsov, Gauge dependence of the effective average action in Einstein gravity, Int. J. Mod. Phys. A 13 (1998) 607 [hep-th/9612019] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  102. [102]

    W. Souma, Gauge and cutoff function dependence of the ultraviolet fixed point in quantum gravity, gr-qc/0006008 [INSPIRE].

  103. [103]

    T.R. Morris, Large curvature and background scale independence in single-metric approximations to asymptotic safety, JHEP 11 (2016) 160 [arXiv:1610.03081] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  104. [104]

    R. Percacci and G.P. Vacca, The background scale Ward identity in quantum gravity, Eur. Phys. J. C 77 (2017) 52 [arXiv:1611.07005] [INSPIRE].

    ADS  Article  Google Scholar 

  105. [105]

    N. Ohta, Background scale independence in quantum gravity, PTEP 2017 (2017) 033E02 [arXiv:1701.01506] [INSPIRE].

  106. [106]

    C. Wetterich, Gauge invariant flow equation, arXiv:1607.02989 [INSPIRE].

  107. [107]

    A. Eichhorn and H. Gies, Ghost anomalous dimension in asymptotically safe quantum gravity, Phys. Rev. D 81 (2010) 104010 [arXiv:1001.5033] [INSPIRE].

    ADS  Google Scholar 

  108. [108]

    A. Eichhorn, H. Gies and M.M. Scherer, Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity, Phys. Rev. D 80 (2009) 104003 [arXiv:0907.1828] [INSPIRE].

    ADS  Google Scholar 

  109. [109]

    K. Groh and F. Saueressig, Ghost wave-function renormalization in asymptotically safe quantum gravity, J. Phys. A 43 (2010) 365403 [arXiv:1001.5032] [INSPIRE].

    MATH  Google Scholar 

  110. [110]

    O. Lauscher and M. Reuter, Fractal spacetime structure in asymptotically safe gravity, JHEP 10 (2005) 050 [hep-th/0508202] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  111. [111]

    M. Reuter and F. Saueressig, Fractal space-times under the microscope: a renormalization group view on Monte Carlo data, JHEP 12 (2011) 012 [arXiv:1110.5224] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  112. [112]

    S. Rechenberger and F. Saueressig, The R 2 phase-diagram of QEG and its spectral dimension, Phys. Rev. D 86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].

    ADS  Google Scholar 

  113. [113]

    M. Reuter and F. Saueressig, Asymptotic safety, fractals, and cosmology, Lect. Notes Phys. 863 (2013) 185 [arXiv:1205.5431].

    ADS  MATH  Article  Google Scholar 

  114. [114]

    H.S. Egawa, T. Hotta, T. Izubuchi, N. Tsuda and T. Yukawa, Scaling structures in four-dimensional simplicial gravity, Nucl. Phys. Proc. Suppl. 53 (1997) 760 [hep-lat/9608149] [INSPIRE].

  115. [115]

    H.S. Egawa, T. Hotta, T. Izubuchi, N. Tsuda and T. Yukawa, Scaling behavior in 4D simplicial quantum gravity, Prog. Theor. Phys. 97 (1997) 539 [hep-lat/9611028] [INSPIRE].

  116. [116]

    S. Horata, H.S. Egawa and T. Yukawa, Grand canonical simulation of 4D simplicial quantum gravity, Nucl. Phys. Proc. Suppl. 119 (2003) 921 [hep-lat/0209004] [INSPIRE].

  117. [117]

    S. Horata, T. Yukawa and H.S. Egawa, Matter dependence of the string susceptibility exponent in four-dimensional simplicial quantum gravity, Prog. Theor. Phys. 108 (2003) 1171 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  118. [118]

    H.S. Egawa, S. Horata and T. Yukawa, Fractal structure of 4D Euclidean simplicial manifold, Nucl. Phys. Proc. Suppl. 129 (2004) 791 [hep-lat/0309047] [INSPIRE].

  119. [119]

    J. Ambjørn, J. Jurkiewicz and R. Loll, Emergence of a 4D world from causal quantum gravity, Phys. Rev. Lett. 93 (2004) 131301 [hep-th/0404156] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  120. [120]

    J. Ambjørn, J. Jurkiewicz and R. Loll, Spectral dimension of the universe, Phys. Rev. Lett. 95 (2005) 171301 [hep-th/0505113] [INSPIRE].

    ADS  Article  Google Scholar 

  121. [121]

    J. Ambjorn, J. Jurkiewicz and R. Loll, Quantum gravity as sum over spacetimes, Lect. Notes Phys. 807 (2010) 59 [arXiv:0906.3947].

    ADS  MATH  Article  Google Scholar 

  122. [122]

    J. Laiho and D. Coumbe, Evidence for asymptotic safety from lattice quantum gravity, Phys. Rev. Lett. 107 (2011) 161301 [arXiv:1104.5505] [INSPIRE].

    ADS  Article  Google Scholar 

  123. [123]

    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative quantum gravity, Phys. Rept. 519 (2012) 127 [arXiv:1203.3591] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  124. [124]

    J. Laiho, S. Bassler, D. Coumbe, D. Du and J.T. Neelakanta, Lattice quantum gravity and asymptotic safety, arXiv:1604.02745 [INSPIRE].

  125. [125]

    I. Donkin and J.M. Pawlowski, The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows, arXiv:1203.4207 [INSPIRE].

  126. [126]

    N. Christiansen, D.F. Litim, J.M. Pawlowski and A. Rodigast, Fixed points and infrared completion of quantum gravity, Phys. Lett. B 728 (2014) 114 [arXiv:1209.4038] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  127. [127]

    N. Christiansen, B. Knorr, J.M. Pawlowski and A. Rodigast, Global flows in quantum Gravity, Phys. Rev. D 93 (2016) 044036 [arXiv:1403.1232] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  128. [128]

    N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski and M. Reichert, Local quantum gravity, Phys. Rev. D 92 (2015) 121501 [arXiv:1506.07016] [INSPIRE].

    ADS  Google Scholar 

  129. [129]

    J. Meibohm, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems, Phys. Rev. D 93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  130. [130]

    J. Meibohm and J.M. Pawlowski, Chiral fermions in asymptotically safe quantum gravity, Eur. Phys. J. C 76 (2016) 285 [arXiv:1601.04597] [INSPIRE].

    ADS  Article  Google Scholar 

  131. [131]

    N. Christiansen, Four-derivative quantum gravity beyond perturbation theory, arXiv:1612.06223 [INSPIRE].

  132. [132]

    T. Denz, J.M. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity, arXiv:1612.07315 [INSPIRE].

  133. [133]

    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  134. [134]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  135. [135]

    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

    ADS  Article  Google Scholar 

  136. [136]

    F. Bezrukov, M.Yu. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    ADS  Article  Google Scholar 

  137. [137]

    C. Wetterich and M. Yamada, Gauge hierarchy problem in asymptotically safe gravity-the resurgence mechanism, Phys. Lett. B 770 (2017) 268 [arXiv:1612.03069] [INSPIRE].

    ADS  Article  Google Scholar 

  138. [138]

    I.L. Buchbinder, S.D. Odintsov and I.L. Shapiro, Effective action in quantum gravity, CRC Press, U.S.A. (1992).

    Google Scholar 

  139. [139]

    E. Elizalde, S.D. Odintsov and A. Romeo, Improved effective potential in curved space-time and quantum matter, higher derivative gravity theory, Phys. Rev. D 51 (1995) 1680 [hep-th/9410113] [INSPIRE].

    ADS  Google Scholar 

  140. [140]

    E. Elizalde, C.O. Lousto, S.D. Odintsov and A. Romeo, GUTs in curved space-time: running gravitational constants, Newtonian potential and the quantum corrected gravitational equations, Phys. Rev. D 52 (1995) 2202 [hep-th/9504014] [INSPIRE].

    ADS  Google Scholar 

  141. [141]

    G. Narain, Exorcising ghosts in induced gravity, arXiv:1612.04930 [INSPIRE].

  142. [142]

    R. Myrzakulov, S. Odintsov and L. Sebastiani, Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics, Nucl. Phys. B 907 (2016) 646 [arXiv:1604.06088] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  143. [143]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

  144. [144]

    F.L. Bezrukov and M. Shaposhnikov, The standard model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    ADS  Article  Google Scholar 

  145. [145]

    Y. Hamada, H. Kawai and K.-y. Oda, Minimal Higgs inflation, PTEP 2014 (2014) 023B02 [arXiv:1308.6651] [INSPIRE].

  146. [146]

    Y. Hamada, H. Kawai, K.-Y. Oda and S.C. Park, Higgs inflation is still alive after the results from BICEP2, Phys. Rev. Lett. 112 (2014) 241301 [arXiv:1403.5043] [INSPIRE].

    ADS  Article  Google Scholar 

  147. [147]

    F. Bezrukov and M. Shaposhnikov, Higgs inflation at the critical point, Phys. Lett. B 734 (2014) 249 [arXiv:1403.6078] [INSPIRE].

    ADS  Article  Google Scholar 

  148. [148]

    Y. Hamada, H. Kawai, K.-y. Oda and S.C. Park, Higgs inflation from standard model criticality, Phys. Rev. D 91 (2015) 053008 [arXiv:1408.4864] [INSPIRE].

    ADS  Google Scholar 

  149. [149]

    Y. Hamada, K.-y. Oda and F. Takahashi, Topological Higgs inflation: origin of standard model criticality, Phys. Rev. D 90 (2014) 097301 [arXiv:1408.5556] [INSPIRE].

    ADS  Google Scholar 

  150. [150]

    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. 91B (1980) 99 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  151. [151]

    S. Weinberg, Asymptotically safe inflation, Phys. Rev. D 81 (2010) 083535 [arXiv:0911.3165] [INSPIRE].

    ADS  Google Scholar 

  152. [152]

    A. Bonanno, A. Contillo and R. Percacci, Inflationary solutions in asymptotically safe f(R) theories, Class. Quant. Grav. 28 (2011) 145026 [arXiv:1006.0192] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  153. [153]

    S.H.H. Tye and J. Xu, Comment on asymptotically safe inflation, Phys. Rev. D 82 (2010) 127302 [arXiv:1008.4787] [INSPIRE].

    ADS  Google Scholar 

  154. [154]

    A. Bonanno and M. Reuter, Entropy production during asymptotically safe inflation, Entropy 13 (2011) 274 [arXiv:1011.2794] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  155. [155]

    M. Hindmarsh, D. Litim and C. Rahmede, Asymptotically safe cosmology, JCAP 07 (2011) 019 [arXiv:1101.5401] [INSPIRE].

    ADS  Article  Google Scholar 

  156. [156]

    Y.-F. Cai and D.A. Easson, Asymptotically safe gravity as a scalar-tensor theory and its cosmological implications, Phys. Rev. D 84 (2011) 103502 [arXiv:1107.5815] [INSPIRE].

    ADS  Google Scholar 

  157. [157]

    A. Bonanno, An effective action for asymptotically safe gravity, Phys. Rev. D 85 (2012) 081503 [arXiv:1203.1962] [INSPIRE].

    ADS  Google Scholar 

  158. [158]

    S.E. Hong, Y.J. Lee and H. Zoe, The possibility of inflation in asymptotically safe gravity, Int. J. Mod. Phys. D 21 (2012) 1250062 [arXiv:1108.5886] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  159. [159]

    C. Fang and Q.-G. Huang, The trouble with asymptotically safe inflation, Eur. Phys. J. C 73 (2013) 2401 [arXiv:1210.7596] [INSPIRE].

    ADS  Article  Google Scholar 

  160. [160]

    E.J. Copeland, C. Rahmede and I.D. Saltas, Asymptotically Safe Starobinsky inflation, Phys. Rev. D 91 (2015) 103530 [arXiv:1311.0881] [INSPIRE].

    ADS  Google Scholar 

  161. [161]

    Z.-Z. Xianyu and H.-J. He, Asymptotically safe Higgs inflation, JCAP 10 (2014) 083 [arXiv:1407.6993] [INSPIRE].

    ADS  Article  Google Scholar 

  162. [162]

    N.G. Nielsen, F. Sannino and O. Svendsen, Inflation from asymptotically safe theories, Phys. Rev. D 91 (2015) 103521 [arXiv:1503.00702] [INSPIRE].

    ADS  Google Scholar 

  163. [163]

    A. Bonanno and A. Platania, Asymptotically safe inflation from quadratic gravity, Phys. Lett. B 750 (2015) 638 [arXiv:1507.03375] [INSPIRE].

    ADS  Article  Google Scholar 

  164. [164]

    I.D. Saltas, Higgs inflation and quantum gravity: an exact renormalisation group approach, JCAP 02 (2016) 048 [arXiv:1512.06134] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  165. [165]

    N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity II: Higher derivative gravity, arXiv:1610.07991 [INSPIRE].

  166. [166]

    J.W. York, Jr., Conformatlly invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity, J. Math. Phys. 14 (1973) 456 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  167. [167]

    T. Kugo and I. Ojima, Local covariant operator formalism of nonabelian gauge theories and quark confinement problem, Prog. Theor. Phys. Suppl. 66 (1979) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  168. [168]

    S.M. Christensen and M.J. Duff, New gravitational index theorems and supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  169. [169]

    D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].

    ADS  Google Scholar 

  170. [170]

    G. de Berredo-Peixoto and I.L. Shapiro, Higher derivative quantum gravity with Gauss-Bonnet term, Phys. Rev. D 71 (2005) 064005 [hep-th/0412249] [INSPIRE].

    ADS  Google Scholar 

  171. [171]

    A. Eichhorn and A. Held, Viability of quantum-gravity induced ultraviolet completions for matter, arXiv:1705.02342 [INSPIRE].

  172. [172]

    C. Wetterich, Gauge symmetry from decoupling, Nucl. Phys. B 915 (2017) 135 [arXiv:1608.01515] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  173. [173]

    C. Wetterich, Quantum correlations for the metric, Phys. Rev. D 95 (2017) 123525 [arXiv:1603.06504] [INSPIRE].

    ADS  Google Scholar 

  174. [174]

    C. Wetterich, Gauge hierarchy due to strong interactions?, Phys. Lett. 104B (1981) 269 [INSPIRE].

    ADS  Article  Google Scholar 

  175. [175]

    C. Wetterich, Fine tuning problem and the renormalization group, Phys. Lett. 140B (1984) 215 [INSPIRE].

    ADS  Article  Google Scholar 

  176. [176]

    C. Wetterich, The mass of the Higgs particle, talk given at Search for scalar particles: experimental and theoretical aspects, July 23–24, Trieste, Italy (1987).

  177. [177]

    C. Wetterich, Where to look for solving the gauge hierarchy problem?, Phys. Lett. B 718 (2012) 573 [arXiv:1112.2910] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  178. [178]

    H. Aoki and S. Iso, Revisiting the naturalness problem — Who is afraid of quadratic divergences?, Phys. Rev. D 86 (2012) 013001 [arXiv:1201.0857] [INSPIRE].

    ADS  Google Scholar 

  179. [179]

    M.J.G. Veltman, The infrared — Ultraviolet connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].

    Google Scholar 

  180. [180]

    Y. Hamada, H. Kawai and K.-y. Oda, Bare Higgs mass at Planck scale, Phys. Rev. D 87 (2013) 053009 [arXiv:1210.2538] [INSPIRE].

    ADS  Google Scholar 

  181. [181]

    I. Masina and M. Quirós, On the Veltman condition, the hierarchy problem and high-scale supersymmetry, Phys. Rev. D 88 (2013) 093003 [arXiv:1308.1242] [INSPIRE].

    ADS  Google Scholar 

  182. [182]

    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [INSPIRE].

    ADS  Article  Google Scholar 

  183. [183]

    T.R. Morris, The exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].

  184. [184]

    H. Gies and C. Wetterich, Renormalization flow of bound states, Phys. Rev. D 65 (2002) 065001 [hep-th/0107221] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  185. [185]

    J. Braun, Fermion interactions and universal behavior in strongly interacting theories, J. Phys. G 39 (2012) 033001 [arXiv:1108.4449] [INSPIRE].

    ADS  Article  Google Scholar 

  186. [186]

    N.H. Barth and S.M. Christensen, Quantizing fourth order gravity theories. 1. The functional integral, Phys. Rev. D 28 (1983) 1876 [INSPIRE].

  187. [187]

    H. Gies and S. Lippoldt, Fermions in gravity with local spin-base invariance, Phys. Rev. D 89 (2014) 064040 [arXiv:1310.2509] [INSPIRE].

    ADS  Google Scholar 

  188. [188]

    H. Gies and S. Lippoldt, Global surpluses of spin-base invariant fermions, Phys. Lett. B 743 (2015) 415 [arXiv:1502.00918] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  189. [189]

    S. Lippoldt, Spin-base invariance of Fermions in arbitrary dimensions, Phys. Rev. D 91 (2015) 104006 [arXiv:1502.05607] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  190. [190]

    P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, CRC Press, U.S.A. (1995).

    MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Yamada.

Additional information

ArXiv ePrint: 1703.09033

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamada, Y., Yamada, M. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system. J. High Energ. Phys. 2017, 70 (2017). https://doi.org/10.1007/JHEP08(2017)070

Download citation

Keywords

  • Models of Quantum Gravity
  • Nonperturbative Effects
  • Renormalization Group