A discussion on leading renormalon in the pole mass

  • J. KomijaniEmail author
Open Access
Regular Article - Theoretical Physics


Perturbative series of some quantities in quantum field theories, such as the pole mass of a quark, suffer from a kind of divergence called renormalon divergence. In this paper, the leading renormalon in the pole mass is investigated, and a map is introduced to suppress this renormalon. The inverse of the map is then used to generate the leading renormalon and obtain an expression to calculate its overall normalization. Finally, the overall normalization of the leading renormalon of the pole mass is calculated for several values of quark flavors.


Renormalization Regularization and Renormalons Nonperturbative Effects 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, The Pole mass of the heavy quark. Perturbation theory and beyond, Phys. Rev. D 50 (1994) 2234 [hep-ph/9402360] [INSPIRE].
  2. [2]
    M. Beneke and V.M. Braun, Heavy quark effective theory beyond perturbation theory: Renormalons, the pole mass and the residual mass term, Nucl. Phys. B 426 (1994) 301 [hep-ph/9402364] [INSPIRE].
  3. [3]
    A.S. Kronfeld, The Perturbative pole mass in QCD, Phys. Rev. D 58 (1998) 051501 [hep-ph/9805215] [INSPIRE].
  4. [4]
    C.M. Bender and T.T. Wu, Anharmonic oscillator, Phys. Rev. 184 (1969) 1231 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Kawai and Y. Takei, Algebraic analysis of singular perturbation theory, volume 227, Translations of Mathematical Monographs Iwanami Series in Modern Mathematics, American Mathematical Society, Providence RI U.S.A. (2005) [Bull. Lond. Math. Soc. 40 (2008) 723].Google Scholar
  6. [6]
    M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].
  7. [7]
    M. Beneke, More on ambiguities in the pole mass, Phys. Lett. B 344 (1995) 341 [hep-ph/9408380] [INSPIRE].
  8. [8]
    C. Ayala, G. Cvetič and A. Pineda, The bottom quark mass from the ϒ(1S) system at NNNLO, JHEP 09 (2014) 045 [arXiv:1407.2128] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.V. Oppenheim and R.W. Schafer, Discrete-time signal processing, Pearson Higher Education (2010).Google Scholar
  10. [10]
    L.S. Brown, L.G. Yaffe and C.-X. Zhai, Large-order perturbation theory for the electromagnetic current-current correlation function, Phys. Rev. D 46 (1992) 4712 [hep-ph/9205213] [INSPIRE].
  11. [11]
    T. Lee, Renormalons beyond one loop, Phys. Rev. D 56 (1997) 1091 [hep-th/9611010] [INSPIRE].ADSGoogle Scholar
  12. [12]
    T. Lee, Normalization constants of large order behavior, Phys. Lett. B 462 (1999) 1 [hep-ph/9908225] [INSPIRE].
  13. [13]
    A. Pineda, Determination of the bottom quark mass from the ϒ(1S) system, JHEP 06 (2001) 022 [hep-ph/0105008] [INSPIRE].
  14. [14]
    A.H. Hoang, A. Jain, I. Scimemi and I.W. Stewart, Infrared Renormalization Group Flow for Heavy Quark Masses, Phys. Rev. Lett. 101 (2008) 151602 [arXiv:0803.4214] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Ball, M. Beneke and V.M. Braun, Resummation of (β 0 α s)n corrections in QCD: Techniques and applications to the τ hadronic width and the heavy quark pole mass, Nucl. Phys. B 452 (1995) 563 [hep-ph/9502300] [INSPIRE].
  16. [16]
    M. Beneke and V.M. Braun, Naive nonabelianization and resummation of fermion bubble chains, Phys. Lett. B 348 (1995) 513 [hep-ph/9411229] [INSPIRE].
  17. [17]
    P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser and D. Wellmann, \( \overline{\mathrm{MS}} \) -on-shell quark mass relation up to four loops in QCD and a general SU(N ) gauge group, Phys. Rev. D 94 (2016) 074025 [arXiv:1606.06754] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Beneke, P. Marquard, P. Nason and M. Steinhauser, On the ultimate uncertainty of the top quark pole mass, arXiv:1605.03609 [INSPIRE].
  19. [19]
    T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996) 329 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Institute for Advanced StudyTechnische Universität MünchenGarchingGermany

Personalised recommendations