Anomaly-free dark matter models are not so simple

  • John Ellis
  • Malcolm Fairbairn
  • Patrick Tunney
Open Access
Regular Article - Theoretical Physics


We explore the anomaly-cancellation constraints on simplified dark matter (DM) models with an extra U(1) gauge boson Z . We show that, if the Standard Model (SM) fermions are supplemented by a single DM fermion χ that is a singlet of the SM gauge group, and the SM quarks have non-zero U(1) charges, the SM leptons must also have non-zero U(1) charges, in which case LHC searches impose strong constraints on the Z mass. Moreover, the DM fermion χ must have a vector-like U(1) coupling. If one requires the DM particle to have a purely axial U(1) coupling, which would be the case if χ were a Majorana fermion and would reduce the impact of direct DM searches, the simplest possibility is that it is accompanied by one other new singlet fermion, but in this case the U(1) charges of the SM leptons still do not vanish. This is also true in a range of models with multiple new singlet fermions with identical charges. Searching for a leptophobic model, we then introduce extra fermions that transform non-trivially under the SM gauge group. We find several such models if the DM fermion is accompanied by two or more other new fermions with non-identical charges, which may have interesting experimental signatures. We present benchmark representatives of the various model classes we discuss.


Anomalies in Field and String Theories Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta 6 (1933) 110 [INSPIRE].ADSzbMATHGoogle Scholar
  2. [2]
    F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, Astrophys. J. 86 (1937) 217 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    V.C. Rubin and W.K. Ford, Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Astrophys. J. 159 (1970) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    V.C. Rubin, N. Thonnard and W.K. Ford, Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R = 4 kpc/ to U GC2885/R = 122 kpc/, Astrophys. J. 238 (1980) 471 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Y. Sofue and V. Rubin, Rotation curves of spiral galaxies, Ann. Rev. Astron. Astrophys. 39 (2001) 137 [astro-ph/0010594] [INSPIRE].
  6. [6]
    J.P. Ostriker, P.J.E. Peebles and A. Yahil, The size and mass of galaxies and the mass of the universe, Astrophys. J. 193 (1974) L1 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].
  8. [8]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  9. [9]
    M.G. Walker, Dark Matter in the Milky Way’s Dwarf Spheroidal Satellites, in Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations, Springer Verlag, Heidelberg Germany (2013) [arXiv:1205.0311].
  10. [10]
    G. Bertone and D. Hooper, A History of Dark Matter, Submitted to: Rev. Mod. Phys. (2016) [arXiv:1605.04909] [INSPIRE].
  11. [11]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  12. [12]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].
  14. [14]
    M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [INSPIRE].
  15. [15]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the Frontier of Dark Matter Direct Detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    I.M. Shoemaker and L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].
  18. [18]
    P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a Razor to Dark Matter Parameter Space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].
  19. [19]
    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Part II: Complete Analysis for the s-channel, JCAP 06 (2014) 060 [arXiv:1402.1275] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond Effective Field Theory for Dark Matter Searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    O. Buchmueller, S.A. Malik, C. McCabe and B. Penning, Constraining Dark Matter Interactions with Pseudoscalar and Scalar Mediators Using Collider Searches for Multijets plus Missing Transverse Energy, Phys. Rev. Lett. 115 (2015) 181802 [arXiv:1505.07826] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.A. Malik et al., Interplay and Characterization of Dark Matter Searches at Colliders and in Direct Detection Experiments, Phys. Dark Univ. 9-10 (2015) 51 [arXiv:1409.4075] [INSPIRE].
  24. [24]
    J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].
  25. [25]
    M. Bauer et al., Towards the next generation of simplified Dark Matter models, White Paper from 2016 Brainstorming Workshop held at Imperial College London, London U.K. (2016) [arXiv:1607.06680].
  26. [26]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].
  28. [28]
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].
  29. [29]
    M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Z models from LHC dijet searches and implications for dark matter, JHEP 09 (2016) 018 [arXiv:1605.07940] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto, Complementarity of DM searches in a consistent simplified model: the case of Z , JHEP 10 (2016) 071 [arXiv:1605.06513] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M.S. Chanowitz, J.R. Ellis and M.K. Gaillard, The Price of Natural Flavor Conservation in Neutral Weak Interactions, Nucl. Phys. B 128 (1977) 506 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, Constraining minimal anomaly free U(1) extensions of the Standard Model, JHEP 11 (2016) 071 [arXiv:1605.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S.M. Barr, B. Bednarz and C. Benesh, Anomaly Constraints and New U(1) Gauge Bosons, Phys. Rev. D 34 (1986) 235 [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Erler and P. Langacker, Constraints on extended neutral gauge structures, Phys. Lett. B 456 (1999) 68 [hep-ph/9903476] [INSPIRE].
  36. [36]
    T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].
  37. [37]
    M. Carena, A. Daleo, B.A. Dobrescu and T.M.P. Tait, Z gauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].
  38. [38]
    P. Batra, B.A. Dobrescu and D. Spivak, Anomaly-free sets of fermions, J. Math. Phys. 47 (2006) 082301 [hep-ph/0510181] [INSPIRE].
  39. [39]
    D.E. Morrissey and J.D. Wells, The Tension between gauge coupling unification, the Higgs boson mass and a gauge-breaking origin of the supersymmetric mu-term, Phys. Rev. D 74 (2006) 015008 [hep-ph/0512019] [INSPIRE].
  40. [40]
    C.-W. Chiang, N.G. Deshpande and J. Jiang, Flavor changing effects in family nonuniversal Z models, JHEP 08 (2006) 075 [hep-ph/0606122] [INSPIRE].
  41. [41]
    P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge Theory for Baryon and Lepton Numbers with Leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Duerr and P. Fileviez Perez, Theory for Baryon Number and Dark Matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].
  45. [45]
    P. Fileviez Perez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. D 82 (2010) 079901] [arXiv:1002.1754] [INSPIRE].
  46. [46]
    A. Ismail, W.-Y. Keung, K.-H. Tsao and J. Unwin, Axial vector Z and anomaly cancellation, Nucl. Phys. B 918 (2017) 220 [arXiv:1609.02188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    D. Hooper, Z Mediated Dark Matter Models for the Galactic Center Gamma-Ray Excess, Phys. Rev. D 91 (2015) 035025 [arXiv:1411.4079] [INSPIRE].
  48. [48]
    B.A. Dobrescu and C. Frugiuele, Hidden GeV-scale interactions of quarks, Phys. Rev. Lett. 113 (2014) 061801 [arXiv:1404.3947] [INSPIRE].
  49. [49]
    E. Dudas, L. Heurtier, Y. Mambrini and B. Zaldivar, Extra U(1), effective operators, anomalies and dark matter, JHEP 11 (2013) 083 [arXiv:1307.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    W. Wang and Z.-L. Han, Radiative linear seesaw model, dark matter and U(1)BL, Phys. Rev. D 92 (2015) 095001 [arXiv:1508.00706] [INSPIRE].
  51. [51]
    J.M. Berryman, A. de Gouvêa, D. Hernández and K.J. Kelly, Imperfect mirror copies of the standard model, Phys. Rev. D 94 (2016) 035009 [arXiv:1605.03610] [INSPIRE].
  52. [52]
    A. de Gouvêa and D. Hernández, New Chiral Fermions, a New Gauge Interaction, Dirac Neutrinos and Dark Matter, JHEP 10 (2015) 046 [arXiv:1507.00916] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    P. Langacker, R.W. Robinett and J.L. Rosner, New Heavy Gauge Bosons in p p and \( p\overline{p} \) Collisions, Phys. Rev. D 30 (1984) 1470 [INSPIRE].ADSGoogle Scholar
  54. [54]
    CMS collaboration, Search for a high-mass resonance decaying into a dilepton final state in 13 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-031 (2016),
  55. [55]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36.1 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-027 (2017),
  56. [56]
    PandaX-II collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  57. [57]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  58. [58]
    J. Kumar and D. Marfatia, Matrix element analyses of dark matter scattering and annihilation, Phys. Rev. D 88 (2013) 014035 [arXiv:1305.1611] [INSPIRE].
  59. [59]
    F. D’Eramo, B.J. Kavanagh and P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP 08 (2016) 111 [arXiv:1605.04917] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  61. [61]
    E.A. Paschos, Diagonal Neutral Currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].ADSGoogle Scholar
  62. [62]
    M.L. Perl, E.R. Lee and D. Loomba, Searches for fractionally charged particles, Ann. Rev. Nucl. Part. Sci. 59 (2009) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Escudero, A. Berlin, D. Hooper and M.-X. Lin, Toward (Finally!) Ruling Out Z and Higgs Mediated Dark Matter Models, JCAP 12 (2016) 029 [arXiv:1609.09079] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Theoretical Particle Physics and Cosmology Group, Physics DepartmentKing’s College LondonLondonU.K.
  2. 2.Theoretical Physics Department, CERNGeneva 23Switzerland

Personalised recommendations