Advertisement

Instanton effects in rank deformed superconformal Chern-Simons theories from topological strings

  • Sanefumi Moriyama
  • Shota Nakayama
  • Tomoki NosakaEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In the so-called (2, 2) theory, which is the U(N)4 circular quiver superconformal Chern-Simons theory with levels (k, 0, −k, 0), it was known that the instanton effects are described by the free energy of topological strings whose Gopakumar-Vafa invariants coincide with those of the local D 5 del Pezzo geometry. By considering two types of one-parameter rank deformations U(N)×U(N + M)×U(N + 2M)×U(N + M) and U(N + M)×U(N)×U(N + M)×U(N), we classify the known diagonal BPS indices by degrees. Together with other two types of one-parameter deformations, we further propose the topological string expression when both of the above two deformations are turned on.

Keywords

Chern-Simons Theories Matrix Models Nonperturbative Effects Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons theories and M2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-matrix models and tri-Sasaki Einstein spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [INSPIRE].ADSGoogle Scholar
  8. [8]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    H. Fuji, S. Hirano and S. Moriyama, Summing up all genus free energy of ABJM matrix model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 03 (2012) P03001 [arXiv:1110.4066] [INSPIRE].MathSciNetGoogle Scholar
  12. [12]
    F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact results on the ABJM Fermi gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Putrov and M. Yamazaki, Exact ABJM partition function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton effects in ABJM theory from Fermi gas approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton bound states in ABJM theory, JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Matsumoto and S. Moriyama, ABJ fractional brane from ABJM Wilson loop, JHEP 03 (2014) 079 [arXiv:1310.8051] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Honda and K. Okuyama, Exact results on ABJ theory and the refined topological string, JHEP 08 (2014) 148 [arXiv:1405.3653] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Honda and S. Moriyama, Instanton effects in orbifold ABJM theory, JHEP 08 (2014) 091 [arXiv:1404.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Moriyama and T. Nosaka, Partition functions of superconformal Chern-Simons theories from Fermi gas approach, JHEP 11 (2014) 164 [arXiv:1407.4268] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Moriyama and T. Nosaka, ABJM membrane instanton from a pole cancellation mechanism, Phys. Rev. D 92 (2015) 026003 [arXiv:1410.4918] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    S. Moriyama and T. Nosaka, Exact instanton expansion of superconformal Chern-Simons theories from topological strings, JHEP 05 (2015) 022 [arXiv:1412.6243] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    Y. Hatsuda, M. Honda and K. Okuyama, Large-N non-perturbative effects in N = 4 superconformal Chern-Simons theories, JHEP 09 (2015) 046 [arXiv:1505.07120] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    D.R. Gulotta, J.P. Ang and C.P. Herzog, Matrix models for supersymmetric Chern-Simons theories with an ADE classification, JHEP 01 (2012) 132 [arXiv:1111.1744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    P.M. Crichigno, C.P. Herzog and D. Jain, Free energy of D n quiver Chern-Simons theories, JHEP 03 (2013) 039 [arXiv:1211.1388] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    B. Assel, N. Drukker and J. Felix, Partition functions of 3d \( \widehat{D} \) -quivers and their mirror duals from 1d free fermions, JHEP 08 (2015) 071 [arXiv:1504.07636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Moriyama and T. Nosaka, Superconformal Chern-Simons partition functions of affine D-type quiver from Fermi gas, JHEP 09 (2015) 054 [arXiv:1504.07710] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    P.M. Crichigno and D. Jain, Non-toric cones and Chern-Simons quivers, JHEP 05 (2017) 046 [arXiv:1702.05486] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the θ-angle in N = 4 super Yang-Mills theory, JHEP 06 (2010) 097[arXiv:0804.2907] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 superconformal Chern-Simons theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    S. Terashima and F. Yagi, Orbifolding the membrane action, JHEP 12 (2008) 041 [arXiv:0807.0368] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Y. Imamura and K. Kimura, N = 4 Chern-Simons theories with auxiliary vector multiplets, JHEP 10 (2008) 040 [arXiv:0807.2144] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Grassi, Y. Hatsuda and M. Mariño, Topological strings from quantum mechanics, Annales Henri Poincaré 17 (2016) 3177 [arXiv:1410.3382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S.H. Katz, A. Klemm and C. Vafa, M theory, topological strings and spinning black holes, Adv. Theor. Math. Phys. 3 (1999) 1445 [hep-th/9910181] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    T. Nosaka, Instanton effects in ABJM theory with general R-charge assignments, JHEP 03 (2016) 059 [arXiv:1512.02862] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M- and [p, q]-strings, JHEP 11 (2013) 112 [arXiv:1308.0619] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact instanton expansion of the ABJM partition function, Prog. Theor. Exp. Phys. 2015 (2015) 11B104 [arXiv:1507.01678] [INSPIRE].
  41. [41]
    M. Mariño, Localization at large-N in Chern-Simons-matter theories, arXiv:1608.02959 [INSPIRE].
  42. [42]
    C.A. Tracy and H. Widom, Proofs of two conjectures related to the thermodynamic Bethe ansatz, Commun. Math. Phys. 179 (1996) 667 [solv-int/9509003] [INSPIRE].
  43. [43]
    M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    Y. Hatsuda and K. Okuyama, Probing non-perturbative effects in M-theory, JHEP 10 (2014) 158 [arXiv:1407.3786] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    X. Wang, G. Zhang and M.-X. Huang, New exact quantization condition for toric Calabi-Yau geometries, Phys. Rev. Lett. 115 (2015) 121601 [arXiv:1505.05360] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p, q)-five-brane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    G. Lockhart and C. Vafa, Superconformal partition functions and non-perturbative topological strings, arXiv:1210.5909 [INSPIRE].
  49. [49]
    V. Mitev, E. Pomoni, M. Taki and F. Yagi, Fiber-base duality and global symmetry enhancement, JHEP 04 (2015) 052 [arXiv:1411.2450] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    R. Kashaev, M. Mariño and S. Zakany, Matrix models from operators and topological strings, 2, Annales Henri Poincaré 17 (2016) 2741 [arXiv:1505.02243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    K. Okuyama, Orientifolding of the ABJ Fermi gas, JHEP 03 (2016) 008 [arXiv:1601.03215] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    M. Mezei and S.S. Pufu, Three-sphere free energy for classical gauge groups, JHEP 02 (2014) 037 [arXiv:1312.0920] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Moriyama and T. Suyama, Instanton effects in orientifold ABJM theory, JHEP 03 (2016) 034 [arXiv:1511.01660] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Honda, Exact relations between M2-brane theories with and without orientifolds, JHEP 06 (2016) 123 [arXiv:1512.04335] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    S. Moriyama and T. Suyama, Orthosymplectic Chern-Simons matrix model and chirality projection, JHEP 04 (2016) 132 [arXiv:1601.03846] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S. Moriyama and T. Nosaka, Orientifold ABJM matrix model: chiral projections and worldsheet instantons, JHEP 06 (2016) 068 [arXiv:1603.00615] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    H. Ouyang, J.-B. Wu and J.-J. Zhang, Supersymmetric Wilson loops in N = 4 super Chern-Simons-matter theory, JHEP 11 (2015) 213 [arXiv:1506.06192] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    M. Cooke, N. Drukker and D. Trancanelli, A profusion of 1/2 BPS Wilson loops in N = 4 Chern-Simons-matter theories, JHEP 10 (2015) 140 [arXiv:1506.07614] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson loops in arbitrary representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Matsuno and S. Moriyama, Giambelli identity in super Chern-Simons matrix model, J. Math. Phys. 58 (2017) 032301 [arXiv:1603.04124] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    H. Awata, S. Hirano and M. Shigemori, The partition function of ABJ theory, Prog. Theor. Exp. Phys. 2013 (2013) 053B04 [arXiv:1212.2966] [INSPIRE].
  64. [64]
    M. Honda, Direct derivation of “mirror” ABJ partition function, JHEP 12 (2013) 046 [arXiv:1310.3126] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K. Kiyoshige and S. Moriyama, Dualities in ABJM matrix model from closed string viewpoint, JHEP 11 (2016) 096 [arXiv:1607.06414] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sanefumi Moriyama
    • 1
    • 2
  • Shota Nakayama
    • 1
    • 3
  • Tomoki Nosaka
    • 4
    Email author
  1. 1.Department of Physics, Graduate School of ScienceOsaka City UniversityOsakaJapan
  2. 2.Osaka City University Advanced Mathematical Institute (OCAMI)OsakaJapan
  3. 3.Department of Physics, Graduate School of ScienceTohoku UniversitySendaiJapan
  4. 4.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations