Advertisement

Analytic continuation of the rotating black hole state counting

  • Jibril Ben Achour
  • Karim Noui
  • Alejandro Perez
Open Access
Regular Article - Theoretical Physics

Abstract

In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ = ±i,weshowthattheleadingorderterminthesemi-classicalexpansionoftheentropy reproduces the Bekenstein-Hawking law independently of the value of J.

Keywords

Black Holes Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.F. Barbero G. and A. Perez, Quantum geometry and black holes, arXiv:1501.02963 [INSPIRE].
  2. [2]
    C. Rovelli, Black hole entropy from loop quantum gravity, Phys. Rev. Lett. 77 (1996) 3288 [gr-qc/9603063] [INSPIRE].
  3. [3]
    A. Ashtekar, C. Beetle and S. Fairhurst, Isolated horizons: a generalization of black hole mechanics, Class. Quant. Grav. 16 (1999) L1 [gr-qc/9812065] [INSPIRE].
  4. [4]
    A. Ashtekar, A. Corichi and K. Krasnov, Isolated horizons: the classical phase space, Adv. Theor. Math. Phys. 3 (1999) 419 [gr-qc/9905089] [INSPIRE].
  5. [5]
    A. Ashtekar, C. Beetle and S. Fairhurst, Mechanics of isolated horizons, Class. Quant. Grav. 17 (2000) 253 [gr-qc/9907068] [INSPIRE].
  6. [6]
    A. Ashtekar, S. Fairhurst and B. Krishnan, Isolated horizons: hamiltonian evolution and the first law, Phys. Rev. D 62 (2000) 104025 [gr-qc/0005083] [INSPIRE].
  7. [7]
    A. Ashtekar, J. Baez, A. Corichi and K. Krasnov, Quantum geometry and black hole entropy, Phys. Rev. Lett. 80 (1998) 904 [gr-qc/9710007] [INSPIRE].
  8. [8]
    A. Ashtekar, J.C. Baez and K. Krasnov, Quantum geometry of isolated horizons and black hole entropy, Adv. Theor. Math. Phys. 4 (2000) 1 [gr-qc/0005126] [INSPIRE].
  9. [9]
    J. Engle, A. Perez and K. Noui, Black hole entropy and SU(2) Chern-Simons theory, Phys. Rev. Lett. 105 (2010) 031302 [arXiv:0905.3168] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Engle, K. Noui, A. Perez and D. Pranzetti, Black hole entropy from an SU(2)-invariant formulation of type I isolated horizons, Phys. Rev. D 82 (2010) 044050 [arXiv:1006.0634] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Engle, K. Noui, A. Perez and D. Pranzetti, The SU(2) black hole entropy revisited, JHEP 05 (2011) 016 [arXiv:1103.2723] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    R.K. Kaul and P. Majumdar, Quantum black hole entropy, Phys. Lett. B 439 (1998) 267 [gr-qc/9801080] [INSPIRE].
  13. [13]
    R.K. Kaul and P. Majumdar, Logarithmic correction to the Bekenstein-Hawking entropy, Phys. Rev. Lett. 84 (2000) 5255 [gr-qc/0002040] [INSPIRE].
  14. [14]
    S. Das, R.K. Kaul and P. Majumdar, A new holographic entropy bound from quantum geometry, Phys. Rev. D 63 (2001) 044019 [hep-th/0006211] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    I. Agullo, J. Fernando Barbero, E.F. Borja, J. D´ıaz-Polo and E.J.S. Villasenor, Detailed black hole state counting in loop quantum gravity, Phys. Rev. D 82 (2010) 084029 [arXiv:1101.3660] [INSPIRE].
  16. [16]
    I. Agullo, G.J. Fernando Barbero, E.F. Borja, J. D´ıaz-Polo and E.J.S. Villasenor, The combinatorics of the SU(2) black hole entropy in loop quantum gravity, Phys. Rev. D 80 (2009) 084006 [arXiv:0906.4529] [INSPIRE].
  17. [17]
    J.F. Barbero G. and E.J.S. Villasenor, On the computation of black hole entropy in loop quantum gravity, Class. Quant. Grav. 26 (2009) 035017 [arXiv:0810.1599] [INSPIRE].
  18. [18]
    J.F. Barbero G. and E.J.S. Villasenor, Generating functions for black hole entropy in loop quantum gravity, Phys. Rev. D 77 (2008) 121502 [arXiv:0804.4784] [INSPIRE].
  19. [19]
    I. Agullo, J.F. Barbero G., J. D´ıaz-Polo, E. Fernández-Borja and E.J.S. Villasenor, Black hole state counting in LQG: a number theoretical approach, Phys. Rev. Lett. 100 (2008) 211301 [arXiv:0802.4077] [INSPIRE].
  20. [20]
    K.A. Meissner, Black hole entropy in loop quantum gravity, Class. Quant. Grav. 21 (2004) 5245 [gr-qc/0407052] [INSPIRE].
  21. [21]
    E.R. Livine and D.R. Terno, Entropy in the classical and quantum polymer black hole models, Class. Quant. Grav. 29 (2012) 224012 [arXiv:1205.5733] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    E. Bianchi, Black hole entropy, loop gravity and polymer physics, Class. Quant. Grav. 28 (2011) 114006 [arXiv:1011.5628] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  25. [25]
    K. Krasnov, Quanta of geometry and rotating black holes, Class. Quant. Grav. 16 (1999) L15 [gr-qc/9902015] [INSPIRE].
  26. [26]
    A. Ashtekar, C. Beetle and J. Lewandowski, Mechanics of rotating isolated horizons, Phys. Rev. D 64 (2001) 044016 [gr-qc/0103026] [INSPIRE].
  27. [27]
    A. Ashtekar, J. Engle and C. Van Den Broeck, Quantum horizons and black hole entropy: inclusion of distortion and rotation, Class. Quant. Grav. 22 (2005) L27 [gr-qc/0412003] [INSPIRE].
  28. [28]
    A. Ashtekar and A. Corichi, Laws governing isolated horizons: inclusion of dilaton couplings, Class. Quant. Grav. 17 (2000) 1317 [gr-qc/9910068] [INSPIRE].
  29. [29]
    A. Ashtekar, A. Corichi and D. Sudarsky, Nonminimally coupled scalar fields and isolated horizons, Class. Quant. Grav. 20 (2003) 3413 [gr-qc/0305044] [INSPIRE].
  30. [30]
    J. Lewandowski and T. Pawlowski, Geometric characterizations of the Kerr isolated horizon, Int. J. Mod. Phys. D 11 (2002) 739 [gr-qc/0101008] [INSPIRE].
  31. [31]
    M. Bojowald, Angular momentum in loop quantum gravity, gr-qc/0008054 [INSPIRE].
  32. [32]
    A. Perez and D. Pranzetti, Static isolated horizons: SU(2) invariant phase space, quantization and black hole entropy, Entropy 13 (2011) 744 [arXiv:1011.2961] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    E. Frodden, A. Perez, D. Pranzetti and C. Röken, Modelling black holes with angular momentum in loop quantum gravity, Gen. Rel. Grav. 46 (2014) 1828 [arXiv:1212.5166] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    E. Frodden, M. Geiller, K. Noui and A. Perez, Black hole entropy from complex Ashtekar variables, Europhys. Lett. 107 (2014) 10005 [arXiv:1212.4060] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Ben Achour, A. Mouchet and K. Noui, Analytic continuation of black hole entropy in loop quantum gravity, JHEP 06 (2015) 145 [arXiv:1406.6021] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    J. Ben Achour and K. Noui, Analytic continuation of real loop quantum gravity: lessons from black hole thermodynamics, PoS (FFP14) 158 [arXiv:1501.05523] [INSPIRE].
  37. [37]
    J. Ben Achour, Towards self dual loop quantum gravity, arXiv:1511.07332 [INSPIRE].
  38. [38]
    M. Geiller and K. Noui, Near-horizon radiation and self-dual loop quantum gravity, Europhys. Lett. 105 (2014) 60001 [arXiv:1402.4138] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Pranzetti, Geometric temperature and entropy of quantum isolated horizons, Phys. Rev. D 89 (2014) 104046 [arXiv:1305.6714] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Pranzetti and H. Sahlmann, Horizon entropy with loop quantum gravity methods, Phys. Lett. B 746 (2015) 209 [arXiv:1412.7435] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    D. Pranzetti, Geometric temperature and entropy of quantum isolated horizons, Phys. Rev. D 89 (2014) 104046 [arXiv:1305.6714] [INSPIRE].ADSGoogle Scholar
  42. [42]
    E. Frodden, M. Geiller, K. Noui and A. Perez, Statistical entropy of a BTZ black hole from loop quantum gravity, JHEP 05 (2013) 139 [arXiv:1212.4473] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    Y. Neiman, The imaginary part of the gravity action and black hole entropy, JHEP 04 (2013) 071 [arXiv:1301.7041] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    Y. Neiman, Imaginary part of the gravitational action at asymptotic boundaries and horizons, Phys. Rev. D 88 (2013) 024037 [arXiv:1305.2207] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Han, Black hole entropy in loop quantum gravity, analytic continuation and dual holography, arXiv:1402.2084 [INSPIRE].
  46. [46]
    N. Bodendorfer and Y. Neiman, Imaginary action, spinfoam asymptotics and the ‘transplanckian’ regime of loop quantum gravity, Class. Quant. Grav. 30 (2013) 195018 [arXiv:1303.4752] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    M. Geiller and K. Noui, Testing the imposition of the spin foam simplicity constraints, Class. Quant. Grav. 29 (2012) 135008 [arXiv:1112.1965] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    S. Alexandrov, M. Geiller and K. Noui, Spin foams and canonical quantization, SIGMA 8 (2012) 055 [arXiv:1112.1961] [INSPIRE].MathSciNetMATHGoogle Scholar
  49. [49]
    J. Ben Achour, M. Geiller, K. Noui and C. Yu, Testing the role of the Barbero-Immirzi parameter and the choice of connection in loop quantum gravity, Phys. Rev. D 91 (2015) 104016 [arXiv:1306.3241] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Ben Achour, M. Geiller, K. Noui and C. Yu, Spectra of geometric operators in three-dimensional loop quantum gravity: from discrete to continuous, Phys. Rev. D 89 (2014) 064064 [arXiv:1306.3246] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Geiller and K. Noui, A note on the Holst action, the time gauge and the Barbero-Immirzi parameter, Gen. Rel. Grav. 45 (2013) 1733 [arXiv:1212.5064] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    E. Witten, Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].MathSciNetMATHGoogle Scholar
  54. [54]
    A. Ghosh and A. Perez, Black hole entropy and isolated horizons thermodynamics, Phys. Rev. Lett. 107 (2011) 241301 [Erratum ibid. 108 (2012) 169901] [arXiv:1107.1320] [INSPIRE].
  55. [55]
    E. Frodden, A. Ghosh and A. Perez, Quasilocal first law for black hole thermodynamics, Phys. Rev. D 87 (2013) 121503 [arXiv:1110.4055] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Ghosh, K. Noui and A. Perez, Statistics, holography and black hole entropy in loop quantum gravity, Phys. Rev. D 89 (2014) 084069 [arXiv:1309.4563] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Jibril Ben Achour
    • 1
  • Karim Noui
    • 2
    • 3
  • Alejandro Perez
    • 4
  1. 1.Departement of Physics, Center for Field Theory and Particles PhysicsFudan UniversityShanghaiChina
  2. 2.Fédération Denis Poisson, Laboratoire de Mathématiques et Physique Théorique (UMR 7350)Université François RabelaisToursFrance
  3. 3.Laboratoire APC — Astroparticule et Cosmologie, Université Paris Diderot Paris 7ParisFrance
  4. 4.Centre de Physique Théorique (UMR 7332), Aix Marseille Université and Université de ToulonMarseilleFrance

Personalised recommendations