You can hide but you have to run: direct detection with vector mediators

  • Francesco D’EramoEmail author
  • Bradley J. Kavanagh
  • Paolo Panci
Open Access
Regular Article - Theoretical Physics


We study direct detection in simplified models of Dark Matter (DM) in which interactions with Standard Model (SM) fermions are mediated by a heavy vector boson. We consider fully general, gauge-invariant couplings between the SM, the mediator and both scalar and fermion DM. We account for the evolution of the couplings between the energy scale of the mediator mass and the nuclear energy scale. This running arises from virtual effects of SM particles and its inclusion is not optional. We compare bounds on the mediator mass from direct detection experiments with and without accounting for the running. In some cases the inclusion of these effects changes the bounds by several orders of magnitude, as a consequence of operator mixing which generates new interactions at low energy. We also highlight the importance of these effects when translating LHC limits on the mediator mass into bounds on the direct detection cross section. For an axial-vector mediator, the running can alter the derived bounds on the spin-dependent DM-nucleon cross section by a factor of two or more. Finally, we provide tools to facilitate the inclusion of these effects in future studies: general approximate expressions for the low energy couplings and a public code runDM to evolve the couplings between arbitrary energy scales.


Beyond Standard Model Renormalization Group 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  2. [2]
    J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].
  4. [4]
    J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the big bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
  6. [6]
    H.-C. Cheng, J.L. Feng and K.T. Matchev, Kaluza-Klein dark matter, Phys. Rev. Lett. 89 (2002) 211301 [hep-ph/0207125] [INSPIRE].
  7. [7]
    A. Birkedal, A. Noble, M. Perelstein and A. Spray, Little Higgs dark matter, Phys. Rev. D 74 (2006) 035002 [hep-ph/0603077] [INSPIRE].
  8. [8]
    B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R.J. Scherrer and M.S. Turner, On the relic, cosmic abundance of stable weakly interacting massive particles, Phys. Rev. D 33 (1986) 1585 [Erratum ibid. D 34 (1986) 3263] [INSPIRE].
  10. [10]
    M. Srednicki, R. Watkins and K.A. Olive, Calculations of relic densities in the early universe, Nucl. Phys. B 310 (1988) 693 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting dark matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.T. Frandsen, U. Haisch, F. Kahlhoefer, P. Mertsch and K. Schmidt-Hoberg, Loop-induced dark matter direct detection signals from gamma-ray lines, JCAP 10 (2012) 033 [arXiv:1207.3971] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 04 (2013) 050 [arXiv:1302.4454] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Vecchi, WIMPs and un-naturalness, arXiv:1312.5695 [INSPIRE].
  17. [17]
    J. Kopp, L. Michaels and J. Smirnov, Loopy constraints on leptophilic dark matter and internal bremsstrahlung, JCAP 04 (2014) 022 [arXiv:1401.6457] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from Standard Model loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Crivellin and U. Haisch, Dark matter direct detection constraints from gauge bosons loops, Phys. Rev. D 90 (2014) 115011 [arXiv:1408.5046] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements, Phys. Rev. D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F. D’Eramo and M. Procura, Connecting dark matter UV complete models to direct detection rates via effective field theory, JHEP 04 (2015) 054 [arXiv:1411.3342] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    A. Berlin, D.S. Robertson, M.P. Solon and K.M. Zurek, Bino variations: effective field theory methods for dark matter direct detection, Phys. Rev. D 93 (2016) 095008 [arXiv:1511.05964] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F. D’Eramo, J. de Vries and P. Panci, A 750 GeV portal: LHC phenomenology and dark matter candidates, JHEP 05 (2016) 089 [arXiv:1601.01571] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    M.W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].ADSGoogle Scholar
  25. [25]
    A.K. Drukier, K. Freese and D.N. Spergel, Detecting cold dark matter candidates, Phys. Rev. D 33 (1986) 3495 [INSPIRE].ADSGoogle Scholar
  26. [26]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The effective field theory of dark matter direct detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J. C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE].
  28. [28]
    E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z and dark matter, JHEP 08 (2009) 014 [arXiv:0904.1745] [INSPIRE].
  29. [29]
    J. Goodman and W. Shepherd, LHC bounds on UV-complete models of dark matter, arXiv:1111.2359 [INSPIRE].
  30. [30]
    H. An, X. Ji and L.-T. Wang, Light dark matter and Z dark force at colliders, JHEP 07 (2012) 182 [arXiv:1202.2894] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Dreiner, D. Schmeier and J. Tattersall, Contact interactions probe effective dark matter models at the LHC, Europhys. Lett. 102 (2013) 51001 [arXiv:1303.3348] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    O. Lebedev and Y. Mambrini, Axial dark matter: the case for an invisible Z , Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Abdullah, A. DiFranzo, A. Rajaraman, T.M.P. Tait, P. Tanedo and A.M. Wijangco, Hidden on-shell mediators for the galactic center γ-ray excess, Phys. Rev. D 90 (2014) 035004 [arXiv:1404.6528] [INSPIRE].ADSGoogle Scholar
  38. [38]
    N.F. Bell, Y. Cai, R.K. Leane and A.D. Medina, Leptophilic dark matter with Z interactions, Phys. Rev. D 90 (2014) 035027 [arXiv:1407.3001] [INSPIRE].ADSGoogle Scholar
  39. [39]
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators, JHEP 01 (2015) 037 [arXiv:1407.8257] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark matter complementarity and the Z portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  42. [42]
    T. Jacques and K. Nordström, Mapping monojet constraints onto simplified dark matter models, JHEP 06 (2015) 142 [arXiv:1502.05721] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Alves and K. Sinha, Searches for dark matter at the LHC: a multivariate analysis in the mono-Z channel, Phys. Rev. D 92 (2015) 115013 [arXiv:1507.08294] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Gupta, R. Primulando and P. Saraswat, A new probe of dark sector dynamics at the LHC, JHEP 09 (2015) 079 [arXiv:1504.01385] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    M. Autran, K. Bauer, T. Lin and D. Whiteson, Searches for dark matter in events with a resonance and missing transverse energy, Phys. Rev. D 92 (2015) 035007 [arXiv:1504.01386] [INSPIRE].ADSGoogle Scholar
  48. [48]
    Y. Bai, J. Bourbeau and T. Lin, Dark matter searches with a mono-Z jet, JHEP 06 (2015) 205 [arXiv:1504.01395] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane and T.J. Weiler, Dark matter at the LHC: effective field theories and gauge invariance, Phys. Rev. D 92 (2015) 053008 [arXiv:1503.07874] [INSPIRE].ADSGoogle Scholar
  51. [51]
    N.F. Bell, Y. Cai and R.K. Leane, Mono-W dark matter signals at the LHC: simplified model analysis, JCAP 01 (2016) 051 [arXiv:1512.00476] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    U. Haisch, F. Kahlhoefer and T.M.P. Tait, On mono-W signatures in spin-1 simplified models, Phys. Lett. B 760 (2016) 207 [arXiv:1603.01267] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Z.-Z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013 [arXiv:1112.3112] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A.A. Pivovarov, Running electromagnetic coupling constant: low-energy normalization and the value at M Z , Phys. Atom. Nucl. 65 (2002) 1319 [hep-ph/0011135] [INSPIRE].
  56. [56]
    H.-Y. Cheng and C.-W. Chiang, Revisiting scalar and pseudoscalar couplings with nucleons, JHEP 07 (2012) 009 [arXiv:1202.1292] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, Model independent direct detection analyses, arXiv:1211.2818 [INSPIRE].
  58. [58]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  59. [59]
    LZ collaboration, D.S. Akerib et al., LUX-ZEPLIN (LZ) conceptual design report, arXiv:1509.02910 [INSPIRE].
  60. [60]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
  61. [61]
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].
  62. [62]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, arXiv:1604.07773 [INSPIRE].
  63. [63]
    PICO collaboration, C. Amole et al., Dark matter search results from the PICO-2L C 3 F 8 bubble chamber, Phys. Rev. Lett. 114 (2015) 231302 [arXiv:1503.00008] [INSPIRE].
  64. [64]
    ATLAS collaboration, Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 06 (2016)059 [arXiv:1604.01306] [INSPIRE].
  65. [65]
    A. Rohatgi, Webplotdigitizer v3.10 webpage,, accessed March 30 2016.
  66. [66]
    P. Panci, New directions in direct dark matter searches, Adv. High Energy Phys. 2014 (2014) 681312 [arXiv:1402.1507] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Francesco D’Eramo
    • 1
    • 2
    Email author
  • Bradley J. Kavanagh
    • 3
    • 4
  • Paolo Panci
    • 5
  1. 1.Department of PhysicsUniversity of California Santa CruzSanta CruzUSA
  2. 2.Santa Cruz Institute for Particle PhysicsSanta CruzUSA
  3. 3.Laboratoire de Physique Théorique et Hautes Energies, CNRS, UMR 7589ParisFrance
  4. 4.Institut de Physique ThéoriqueUniversité Paris Saclay, CNRS, CEAGif-sur-Yvette CedexFrance
  5. 5.Institut d’Astrophysique de Paris, UMR 7095 CNRSUniversité Pierre et Marie CurieParisFrance

Personalised recommendations