Advertisement

Detecting superlight dark matter with Fermi-degenerate materials

  • Yonit Hochberg
  • Matt Pyle
  • Yue Zhao
  • Kathryn M. Zurek
Open Access
Regular Article - Theoretical Physics

Abstract

We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of \( \mathcal{O} \)(keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to \( \mathcal{O} \)(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ∼ 10−3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  2. [2]
    D.C. Malling et al., After LUX: The LZ Program, arXiv:1110.0103 [INSPIRE].
  3. [3]
    XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].
  4. [4]
    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Ovanesyan, T.R. Slatyer and I.W. Stewart, Heavy Dark Matter Annihilation from Effective Field Theory, Phys. Rev. Lett. 114 (2015) 211302 [arXiv:1409.8294] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Bauer, T. Cohen, R.J. Hill and M.P. Solon, Soft Collinear Effective Theory for Heavy WIMP Annihilation, JHEP 01 (2015) 099 [arXiv:1409.7392] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
  9. [9]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R.N. Mohapatra and V.L. Teplitz, Mirror dark matter and galaxy core densities of galaxies, Phys. Rev. D 62 (2000) 063506 [astro-ph/0001362] [INSPIRE].
  11. [11]
    R.N. Mohapatra, S. Nussinov and V.L. Teplitz, Mirror matter as selfinteracting dark matter, Phys. Rev. D 66 (2002) 063002 [hep-ph/0111381] [INSPIRE].
  12. [12]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Hooper and K.M. Zurek, A Natural Supersymmetric Model with MeV Dark Matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Kumar and J.L. Feng, WIMPless Dark Matter, AIP Conf. Proc. 1200 (2010) 1059 [arXiv:0909.2877] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].
  18. [18]
    SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].
  19. [19]
    SuperCDMS collaboration, R. Agnese et al., New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].
  20. [20]
    R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor Probes of Light Dark Matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting Detectors for Superlight Dark Matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-alpha constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Tremaine and J.E. Gunn, Dynamical Role of Light Neutral Leptons in Cosmology, Phys. Rev. Lett. 42 (1979) 407 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Boyarsky, O. Ruchayskiy and D. Iakubovskyi, A lower bound on the mass of Dark Matter particles, JCAP 03 (2009) 005 [arXiv:0808.3902] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Madsen, Phase space constraints on bosonic and fermionic dark matter, Phys. Rev. Lett. 64 (1990) 2744 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. McKinsey, Light Noble Gases for Light Dark Matter Detection, talk at Berkeley Light Dark Matter Workshop, June 2015.Google Scholar
  29. [29]
    S. Hertel, Superfluid Helium a Unique Detector Material for Low Energies, talk at Berkeley Light Dark Matter Workshop, June 2015.Google Scholar
  30. [30]
    M. Tinkham, Introduction to Superconductivity, Chapter 3, McGraw-Hill Book Co. (1975).Google Scholar
  31. [31]
    M. Kurakado, Possibility of high resolution detectors using superconducting tunnel junctions, Nucl. Instrum. Meth. 196 (1982) 275.ADSCrossRefGoogle Scholar
  32. [32]
    M.C. Pyle, Optimizing the design and analysis of cryogenic semiconductor dark matter detectors for maximum sensitivity, FERMILAB-THESIS-2012-53.
  33. [33]
    E. Hashimoto, U. Yoshitake and H. Yamasaki, Anisotropy of Residual Electrical Resistivity in High-Purity Aluminum Single Crystals, J. Phys. Soc. Jpn. 62 (1993) 4178.ADSCrossRefGoogle Scholar
  34. [34]
    R. Barends, S. van Vliet, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao and T.M. Klapwijk, Enhancement of quasiparticle recombination in Ta and Al superconductors by implantation of magnetic and nonmagnetic atoms, Phys. Rev. B 79 (2009) 020509 [arXiv:0811.1961].ADSCrossRefGoogle Scholar
  35. [35]
    J.N. Ullom, P.A. Fisher and M. Nahum, Energy-dependent quasiparticle group velocity in a superconductor, Phys. Rev. B 58 (1998) 8225.ADSCrossRefGoogle Scholar
  36. [36]
    S. Tamura, Isotope scattering of dispersive phonons in Ge, Phys. Rev. B 27 (1983) 858.ADSCrossRefGoogle Scholar
  37. [37]
    J.D. Short, T.L. Head and J.P. Wolfe, Phonon imaging in superconducting Pb crystals: Absence of large gap anisotropy and spin-density waves, Phys. Rev. B 78 (2008) 054515.ADSCrossRefGoogle Scholar
  38. [38]
    T.L. Head and J.P. Wolfe, Influence of nonequilibrium quasiparticles in phonon imaging of superconductors: Consistency with BCS theory in Pb crystals, Phys. Rev. B 78 (2008) 054516.ADSCrossRefGoogle Scholar
  39. [39]
    S. Tamura, Spontaneous decay rates of LA phonons in quasi-isotropic solids, Phys. Rev. B 31 (1985) 2574.ADSCrossRefGoogle Scholar
  40. [40]
    SuperCDMS collaboration, M. Pyle, unpublished.Google Scholar
  41. [41]
    N.E. Booth, Quasiparticle trapping and the quasiparticle multiplier, Appl. Phys. Lett. 50 (1987) 293.ADSCrossRefGoogle Scholar
  42. [42]
    K.D. Irwin, S.W. Nam, B. Cabrera, B. Chugg and B.A. Young, A quasiparticle-trap-assisted transition-edge sensor for phonon-mediated particle detection, Rev. Sci. Instrum. 66 (1995) 5322 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R.W. Young, Sabine Reverberation Equation and Sound Power Calculations, J. Acoust. Soc. Am. 31 (1959) 912.ADSCrossRefGoogle Scholar
  44. [44]
    S.B. Kaplan, C.C. Chi, D.N. Langenberg, J.J. Chang, S. Jafarey and D.J. Scalapino, Quasiparticle and phonon lifetimes in superconductors, Phys. Rev. B 14 (1976) 4854 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M.G. Blamire, Z.H. Barber and P.A. Warburton, Proximity effect in superconducting tunnel junctions with bilayer electrodes, Physica B 194 (1994) 1675.ADSGoogle Scholar
  46. [46]
    D.C. Moore et al., Quasiparticle Trapping in Microwave Kinetic Inductance Strip Detectors, AIP Conf. Proc. 1185 (2009) 168.ADSCrossRefGoogle Scholar
  47. [47]
    J.J. Yen et al., Measurement Of Quasiparticle Transport In Aluminum Films Using Tungsten Transition-Edge Sensors, Appl. Phys. Lett. 105 (2014) 163504 [arXiv:1406.7308] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K.D. Irwin and G.C. Hilton, Transition Edge Sensors, Top. Appl. Phys. 99 (2005) 63.Google Scholar
  49. [49]
    A.J. Miller, S.W. Nam, J.M. Martinis and A.V. Sergienko, Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination, Appl. Phys. Lett. 83 (2003) 791.ADSCrossRefGoogle Scholar
  50. [50]
    B.S. Karasik, et al., Energy-resolved detection of single infrared photons with λ = 8 μm using a superconducting microbolometer, Appl. Phys. Lett. 101 (2012) 052601 [arXiv:1207.2164] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D.J. Goldie, A.V. Velichko, D.M. Glowacka and S. Withington, Ultra-low-noise MoCu transition edge sensors for space applications, J. Appl. Phys. 109 (2011) 084507.ADSCrossRefGoogle Scholar
  52. [52]
    M. Pyle, Optimizing the Design and Analysis of Cryogenic Semiconductor Dark Matter Detectors for Maximum Sensitivity, Ph.D. Thesis, Stanford University, U.S.A. (2012).Google Scholar
  53. [53]
    M. Pyle, E. Feliciano-Figueroa and B. Sadoulet, Optimized Designs for Very Low Temperature Massive Calorimeters, arXiv:1503.01200 [INSPIRE].
  54. [54]
    J.N. Bahcall and R.K. Ulrich, Solar Models, Neutrino Experiments and Helioseismology, Rev. Mod. Phys. 60 (1988) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J.N. Bahcall, Gallium solar neutrino experiments: Absorption cross-sections, neutrino spectra and predicted event rates, Phys. Rev. C 56 (1997) 3391 [hep-ph/9710491] [INSPIRE].
  56. [56]
    SuperCDMS SNOLAB Critical Design Review, work in progress.Google Scholar
  57. [57]
    S. Reddy, M. Prakash and J.M. Lattimer, Neutrino interactions in hot and dense matter, Phys. Rev. D 58 (1998) 013009 [astro-ph/9710115] [INSPIRE].
  58. [58]
    M.C. Smith et al., The RAVE Survey: Constraining the Local Galactic Escape Speed, Mon. Not. Roy. Astron. Soc. 379 (2007) 755 [astro-ph/0611671] [INSPIRE].
  59. [59]
    S. Tulin, H.-B. Yu and K.M. Zurek, Resonant Dark Forces and Small Scale Structure, Phys. Rev. Lett. 110 (2013) 111301 [arXiv:1210.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].
  61. [61]
    D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].
  62. [62]
    M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].
  63. [63]
    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Rocha et al., Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure, Mon. Not. Roy. Astron. Soc. 430 (2013) 81 [arXiv:1208.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc. 430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
  66. [66]
    M. Kaplinghat, S. Tulin and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Silk, Cosmic black body radiation and galaxy formation, Astrophys. J. 151 (1968) 459 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S.D. McDermott, H.-B. Yu and K.M. Zurek, Turning off the Lights: How Dark is Dark Matter?, Phys. Rev. D 83 (2011) 063509 [arXiv:1011.2907] [INSPIRE].ADSGoogle Scholar
  69. [69]
    G.G. Raffelt, Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles, University of Chicago Press, U.S.A. (1996).Google Scholar
  70. [70]
    J.A. Grifols, E. Masso and S. Peris, Energy Loss From the Sun and RED Giants: Bounds on Short Range Baryonic and Leptonic Forces, Mod. Phys. Lett. A 4 (1989) 311 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J.B. Dent, F. Ferrer and L.M. Krauss, Constraints on Light Hidden Sector Gauge Bosons from Supernova Cooling, arXiv:1201.2683 [INSPIRE].
  72. [72]
    D. Hanneke, S. Fogwell and G. Gabrielse, New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez and F. Biraben, New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett. 106 (2011) 080801 [arXiv:1012.3627] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant, Phys. Rev. Lett. 109 (2012) 111807 [arXiv:1205.5368] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    B. Batell, R. Essig and Z. Surujon, Strong Constraints on Sub-GeV Dark Sectors from SLAC Beam Dump E137, Phys. Rev. Lett. 113 (2014) 171802 [arXiv:1406.2698] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    BaBar collaboration, B. Aubert et al., Search for Invisible Decays of a Light Scalar in Radiative Transitions υ 3SγA0, arXiv:0808.0017 [INSPIRE].
  77. [77]
    R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining Light Dark Matter with Low-Energy e+e Colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    C. Boehm, M.J. Dolan and C. McCabe, A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    Y. Hochberg, Y. Zhao and K.M. Zurek, work in progress.Google Scholar
  80. [80]
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    G.W. Anderson and S.M. Carroll, Dark matter with time dependent mass, astro-ph/9711288 [INSPIRE].
  82. [82]
    R. Fardon, A.E. Nelson and N. Weiner, Dark energy from mass varying neutrinos, JCAP 10 (2004) 005 [astro-ph/0309800] [INSPIRE].
  83. [83]
    N. Weiner and K.M. Zurek, New matter effects and BBN constraints for mass varying neutrinos, Phys. Rev. D 74 (2006) 023517 [hep-ph/0509201] [INSPIRE].
  84. [84]
    P. Young, Longitudinal and Transverse Dynamical Response of the Electron Gas in the Random Phase Approximation (RPA), http://young.physics.ucsc.edu/232/rpa2.pdf (2006).
  85. [85]
    M. Dressel and G. Gruner, Electrodynamics of Solids, Optical Properties of Electrons in Matter, Cambridge University Press (2002).Google Scholar
  86. [86]
    A. Schmitt, Introduction to Superfluidity, Lect. Notes Phys. 888 (2015) pp.1-155 [arXiv:1404.1284] [INSPIRE].
  87. [87]
    H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013) 190 [arXiv:1302.3884] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    H. An, M. Pospelov and J. Pradler, Dark Matter Detectors as Dark Photon Helioscopes, Phys. Rev. Lett. 111 (2013) 041302 [arXiv:1304.3461] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    M. Betz, F. Caspers, M. Gasior, M. Thumm and S.W. Rieger, First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS), Phys. Rev. D 88 (2013) 075014 [arXiv:1310.8098] [INSPIRE].ADSGoogle Scholar
  90. [90]
    P.W. Graham, J. Mardon, S. Rajendran and Y. Zhao, Parametrically enhanced hidden photon search, Phys. Rev. D 90 (2014) 075017 [arXiv:1407.4806] [INSPIRE].ADSGoogle Scholar
  91. [91]
    J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].
  93. [93]
    M. Haft, G. Raffelt and A. Weiss, Standard and nonstandard plasma neutrino emission revisited, Astrophys. J. 425 (1994) 222 [Erratum ibid. 438 (1995) 1017] [astro-ph/9309014] [INSPIRE].
  94. [94]
    M.M. Miller Bertolami, Limits on the neutrino magnetic dipole moment from the luminosity function of hot white dwarfs, Astron. Astrophys. 562 (2014) A123 [arXiv:1407.1404] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    K. Kadota and J. Silk, Constraints on Light Magnetic Dipole Dark Matter from the ILC and SN 1987A, Phys. Rev. D 89 (2014) 103528 [arXiv:1402.7295] [INSPIRE].ADSGoogle Scholar
  96. [96]
    K. Sigurdson, M. Doran, A. Kurylov, R.R. Caldwell and M. Kamionkowski, Dark-matter electric and magnetic dipole moments, Phys. Rev. D 70 (2004) 083501 [Erratum ibid. D 73 (2006) 089903] [astro-ph/0406355] [INSPIRE].
  97. [97]
    J.R. Schrieffer, Theory of Superconductivity, Chapter 8, Westview Press (1964, 1999).Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Yonit Hochberg
    • 1
    • 2
  • Matt Pyle
    • 3
  • Yue Zhao
    • 4
  • Kathryn M. Zurek
    • 1
    • 2
  1. 1.Theory Group, Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Berkeley Center for Theoretical PhysicsUniversity of CaliforniaBerkeleyUSA
  3. 3.Physics DepartmentUniversity of CaliforniaBerkeleyUSA
  4. 4.Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations