Advertisement

Loop Corrections to Standard Model fields in inflation

  • Xingang Chen
  • Yi Wang
  • Zhong-Zhi XianyuEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate 1-loop corrections to the Schwinger-Keldysh propagators of Standard-Model-like fields of spin-0, 1/2, and 1, with all renormalizable interactions during inflation. We pay special attention to the late-time divergences of loop corrections, and show that the divergences can be resummed into finite results in the late-time limit using dynamical renormalization group method. This is our first step toward studying both the Standard Model and new physics in the primordial universe.

Keywords

Cosmology of Theories beyond the SM Effective field theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  2. [2]
    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys. 571 (2014) A24 [arXiv:1303.5084] [INSPIRE].
  5. [5]
    CMBPol Study Team collaboration, D. Baumann et al., CMBPol Mission Concept Study: Probing Inflation with CMB Polarization, AIP Conf. Proc. 1141 (2009) 10 [arXiv:0811.3919] [INSPIRE].
  6. [6]
    T. Matsumura et al., Mission design of LiteBIRD, J. Low Temp. Phys. 176 (2014) 733 [arXiv:1311.2847] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O. Doré et al., Cosmology with the SPHEREX All-Sky Spectral Survey, arXiv:1412.4872 [INSPIRE].
  8. [8]
    J.B. Muñoz, Y. Ali-Haïmoud and M. Kamionkowski, Primordial non-Gaussianity from the bispectrum of 21-cm fluctuations in the dark ages, Phys. Rev. D 92 (2015) 083508 [arXiv:1506.04152] [INSPIRE].
  9. [9]
    X. Chen and Y. Wang, Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].ADSGoogle Scholar
  10. [10]
    X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
  12. [12]
    D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].ADSGoogle Scholar
  13. [13]
    V. Assassi, D. Baumann and D. Green, On Soft Limits of Inflationary Correlation Functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Wang, Inflation, Cosmic Perturbations and Non-Gaussianities, Commun. Theor. Phys. 62 (2014) 109 [arXiv:1303.1523] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. Baumann and L. McAllister, Inflation and String Theory, arXiv:1404.2601.
  18. [18]
    F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Bezrukov, The Higgs field as an inflaton, Class. Quant. Grav. 30 (2013) 214001 [arXiv:1307.0708] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    X. Chen, Y. Wang and Z. Xianyu, in preparation.Google Scholar
  21. [21]
    A.D. Linde, Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe Scenario, Phys. Lett. B 116 (1982) 335 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
  24. [24]
    F. Finelli, G. Marozzi, A.A. Starobinsky, G.P. Vacca and G. Venturi, Generation of fluctuations during inflation: Comparison of stochastic and field-theoretic approaches, Phys. Rev. D 79 (2009) 044007 [arXiv:0808.1786] [INSPIRE].ADSGoogle Scholar
  25. [25]
    F. Finelli, G. Marozzi, A.A. Starobinsky, G.P. Vacca and G. Venturi, Stochastic growth of quantum fluctuations during slow-roll inflation, Phys. Rev. D 82 (2010) 064020 [arXiv:1003.1327] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C.P. Burgess, R. Holman and G. Tasinato, Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation, JHEP 01 (2016) 153 [arXiv:1512.00169] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C.P. Burgess, L. Leblond, R. Holman and S. Shandera, Super-Hubble de Sitter Fluctuations and the Dynamical RG, JCAP 03 (2010) 033 [arXiv:0912.1608] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C.P. Burgess, R. Holman, L. Leblond and S. Shandera, Breakdown of Semiclassical Methods in de Sitter Space, JCAP 10 (2010) 017 [arXiv:1005.3551] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    V.K. Onemli and R.P. Woodard, Superacceleration from massless, minimally coupled ϕ 4, Class. Quant. Grav. 19 (2002) 4607 [gr-qc/0204065] [INSPIRE].
  30. [30]
    T. Brunier, V.K. Onemli and R.P. Woodard, Two loop scalar self-mass during inflation, Class. Quant. Grav. 22 (2005) 59 [gr-qc/0408080] [INSPIRE].
  31. [31]
    E.O. Kahya, V.K. Onemli and R.P. Woodard, The ζ-ζ Correlator Is Time Dependent, Phys. Lett. B 694 (2011) 101 [arXiv:1006.3999] [INSPIRE].ADSGoogle Scholar
  32. [32]
    V.K. Onemli, Quantum corrected mode function and power spectrum for a scalar field during inflation, Phys. Rev. D 89 (2014) 083537 [arXiv:1312.6409] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Rajaraman, On the proper treatment of massless fields in Euclidean de Sitter space, Phys. Rev. D 82 (2010) 123522 [arXiv:1008.1271] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Beneke and P. Moch, On “dynamical mass” generation in Euclidean de Sitter space, Phys. Rev. D 87 (2013) 064018 [arXiv:1212.3058] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Marolf and I.A. Morrison, The IR stability of de Sitter: Loop corrections to scalar propagators, Phys. Rev. D 82 (2010) 105032 [arXiv:1006.0035] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D. Marolf and I.A. Morrison, The IR stability of de Sitter QFT: results at all orders, Phys. Rev. D 84 (2011) 044040 [arXiv:1010.5327] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Higuchi, D. Marolf and I.A. Morrison, On the Equivalence between Euclidean and In-In Formalisms in de Sitter QFT, Phys. Rev. D 83 (2011) 084029 [arXiv:1012.3415] [INSPIRE].ADSGoogle Scholar
  38. [38]
    E.T. Akhmedov, IR divergences and kinetic equation in de Sitter space. Poincaré patch: Principal series, JHEP 01 (2012) 066 [arXiv:1110.2257] [INSPIRE].
  39. [39]
    D. Krotov and A.M. Polyakov, Infrared Sensitivity of Unstable Vacua, Nucl. Phys. B 849 (2011) 410 [arXiv:1012.2107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    A.M. Polyakov, Infrared instability of the de Sitter space, arXiv:1209.4135 [INSPIRE].
  41. [41]
    J.I. Kapusta and C. Gale, Finite-Temperature Field Theory, Principles and Applications, second editon, Cambridge University Press (2006).Google Scholar
  42. [42]
    J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    R.D. Jordan, Effective Field Equations for Expectation Values, Phys. Rev. D 33 (1986) 444 [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    M. van der Meulen and J. Smit, Classical approximation to quantum cosmological correlations, JCAP 11 (2007) 023 [arXiv:0707.0842] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    B. Garbrecht and T. Prokopec, Fermion mass generation in de Sitter space, Phys. Rev. D 73 (2006) 064036 [gr-qc/0602011] [INSPIRE].
  46. [46]
    B. Greene, M. Parikh and J.P. van der Schaar, Universal correction to the inflationary vacuum, JHEP 04 (2006) 057 [hep-th/0512243] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    A.-C. Davis, K. Dimopoulos, T. Prokopec and O. Tornkvist, Primordial spectrum of gauge fields from inflation, Phys. Lett. B 501 (2001) 165 [astro-ph/0007214] [INSPIRE].
  48. [48]
    T. Prokopec, O. Tornkvist and R.P. Woodard, One loop vacuum polarization in a locally de Sitter background, Annals Phys. 303 (2003) 251 [gr-qc/0205130] [INSPIRE].
  49. [49]
    T. Prokopec, O. Tornkvist and R.P. Woodard, Photon mass from inflation, Phys. Rev. Lett. 89 (2002) 101301 [astro-ph/0205331] [INSPIRE].
  50. [50]
    T. Prokopec and E. Puchwein, Photon mass generation during inflation: de Sitter invariant case, JCAP 04 (2004) 007 [astro-ph/0312274] [INSPIRE].
  51. [51]
    T. Prokopec and R.P. Woodard, Dynamics of superhorizon photons during inflation with vacuum polarization, Annals Phys. 312 (2004) 1 [gr-qc/0310056] [INSPIRE].
  52. [52]
    N.C. Tsamis and R.P. Woodard, The Quantum gravitational back reaction on inflation, Annals Phys. 253 (1997) 1 [hep-ph/9602316] [INSPIRE].
  53. [53]
    N.C. Tsamis and R.P. Woodard, One loop graviton selfenergy in a locally de Sitter background, Phys. Rev. D 54 (1996) 2621 [hep-ph/9602317] [INSPIRE].
  54. [54]
    E. Dimastrogiovanni and N. Bartolo, One-loop graviton corrections to the curvature perturbation from inflation, JCAP 11 (2008) 016 [arXiv:0807.2790] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    N. Bartolo, E. Dimastrogiovanni and A. Vallinotto, One-loop corrections to the power spectrum in general single-field inflation, JCAP 11 (2010) 003 [arXiv:1006.0196] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S.B. Giddings and M.S. Sloth, Semiclassical relations and IR effects in de Sitter and slow-roll space-times, JCAP 01 (2011) 023 [arXiv:1005.1056] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    W. Xue, X. Gao and R. Brandenberger, IR Divergences in Inflation and Entropy Perturbations, JCAP 06 (2012) 035 [arXiv:1201.0768] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    W.H. Kinney, Horizon crossing and inflation with large η, Phys. Rev. D 72 (2005) 023515 [gr-qc/0503017] [INSPIRE].
  59. [59]
    M.H. Namjoo, H. Firouzjahi and M. Sasaki, Violation of non-Gaussianity consistency relation in a single field inflationary model, Europhys. Lett. 101 (2013) 39001 [arXiv:1210.3692] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    X. Chen, H. Firouzjahi, M.H. Namjoo and M. Sasaki, A Single Field Inflation Model with Large Local Non-Gaussianity, Europhys. Lett. 102 (2013) 59001 [arXiv:1301.5699] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    Q.-G. Huang and Y. Wang, Large Local Non-Gaussianity from General Single-field Inflation, JCAP 06 (2013) 035 [arXiv:1303.4526] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    X. Chen, H. Firouzjahi, M.H. Namjoo and M. Sasaki, Fluid Inflation, JCAP 09 (2013) 012 [arXiv:1306.2901] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    X. Chen, H. Firouzjahi, E. Komatsu, M.H. Namjoo and M. Sasaki, In-in and δN calculations of the bispectrum from non-attractor single-field inflation, JCAP 12 (2013) 039 [arXiv:1308.5341] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    D.H. Lyth, K.A. Malik and M. Sasaki, A General proof of the conservation of the curvature perturbation, JCAP 05 (2005) 004 [astro-ph/0411220] [INSPIRE].
  65. [65]
    V. Assassi, D. Baumann and D. Green, Symmetries and Loops in Inflation, JHEP 02 (2013) 151 [arXiv:1210.7792] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    L. Senatore and M. Zaldarriaga, On Loops in Inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    L. Senatore and M. Zaldarriaga, On Loops in Inflation II: IR Effects in Single Clock Inflation, JHEP 01 (2013) 109 [arXiv:1203.6354] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    G.L. Pimentel, L. Senatore and M. Zaldarriaga, On Loops in Inflation III: Time Independence of zeta in Single Clock Inflation, JHEP 07 (2012) 166 [arXiv:1203.6651] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    L. Senatore and M. Zaldarriaga, The constancy of ζ in single-clock Inflation at all loops, JHEP 09 (2013) 148 [arXiv:1210.6048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].ADSMathSciNetGoogle Scholar
  71. [71]
    S. Weinberg, Quantum contributions to cosmological correlations. II. Can these corrections become large?, Phys. Rev. D 74 (2006) 023508 [hep-th/0605244] [INSPIRE].
  72. [72]
    A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
  73. [73]
    N. Bartolo, S. Matarrese, M. Pietroni, A. Riotto and D. Seery, On the Physical Significance of Infra-red Corrections to Inflationary Observables, JCAP 01 (2008) 015 [arXiv:0711.4263] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    N.C. Tsamis, A. Tzetzias and R.P. Woodard, Stochastic Samples versus Vacuum Expectation Values in Cosmology, JCAP 09 (2010) 016 [arXiv:1006.5681] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute for Theory and ComputationHarvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.Department of PhysicsThe University of Texas at DallasRichardsonUSA
  3. 3.Department of PhysicsThe Hong Kong University of Science and TechnologyHong KongChina
  4. 4.Center of Mathematical Sciences and ApplicationsHarvard UniversityCambridgeUSA

Personalised recommendations