Advertisement

QCD unitarity constraints on Reggeon Field Theory

  • Alex Kovner
  • Eugene Levin
  • Michael LublinskyEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit” as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.

Keywords

Perturbative QCD Resummation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V.N. Gribov, A Reggeon Diagram Technique, Sov. Phys. JETP 26 (1968) 414 [INSPIRE].ADSGoogle Scholar
  2. [2]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  4. [4]
    L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.H. Mueller and J.-w. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].
  7. [7]
    A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].
  9. [9]
    A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].
  10. [10]
    L.N. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].
  11. [11]
    L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    L.N. Lipatov, Gauge invariant effective action for high-energy processes in QCD, Nucl. Phys. B 452 (1995) 369 [hep-ph/9502308] [INSPIRE].
  13. [13]
    R. Kirschner, L.N. Lipatov and L. Szymanowski, Effective action for multi-Regge processes in QCD, Nucl. Phys. B 425 (1994) 579 [hep-th/9402010] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Kirschner, L.N. Lipatov and L. Szymanowski, Symmetry properties of the effective action for high-energy scattering in QCD, Phys. Rev. D 51 (1995) 838 [hep-th/9403082] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Bartels, Unitarity corrections to the Lipatov Pomeron and the four gluon operator in deep inelastic scattering in QCD, Z. Phys. C 60 (1993) 471 [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Bartels and M. Wusthoff, The triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026 [hep-ph/9908454] [INSPIRE].
  18. [18]
    C. Ewerz, Reggeization in high-energy QCD, JHEP 04 (2001) 031 [hep-ph/0103260] [INSPIRE].
  19. [19]
    J. Bartels, High-Energy Behavior in a Nonabelian Gauge Theory (II). First Corrections To T NM Beyond The Leading Lns Approximation, Nucl. Phys. B 175 (1980) 365 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Kwiecinski and M. Praszalowicz, Three Gluon Integral Equation and Odd C Singlet Regge Singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
  22. [22]
    L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
  23. [23]
    A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [INSPIRE].
  24. [24]
    G.P. Salam, Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B 461 (1996) 512 [hep-ph/9509353] [INSPIRE].
  25. [25]
    Y.V. Kovchegov and E. Levin, Diffractive dissociation including multiple Pomeron exchanges in high parton density QCD, Nucl. Phys. B 577 (2000) 221 [hep-ph/9911523] [INSPIRE].
  26. [26]
    M. Braun, Structure function of the nucleus in the perturbative QCD with N c → ∞ (BFKL Pomeron fan diagrams), Eur. Phys. J. C 16 (2000) 337 [hep-ph/0001268] [INSPIRE].
  27. [27]
    M.A. Braun and G.P. Vacca, Triple Pomeron vertex in the limit N c → ∞, Eur. Phys. J. C 6 (1999) 147 [hep-ph/9711486] [INSPIRE].
  28. [28]
    J. Bartels, M. Braun and G.P. Vacca, Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].
  29. [29]
    J. Bartels, L.N. Lipatov and G.P. Vacca, Interactions of reggeized gluons in the Mobius representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].
  30. [30]
    M.A. Braun, Nucleus-nucleus scattering in perturbative QCD with N c → ∞, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].
  31. [31]
    M.A. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].
  32. [32]
    M.A. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large N c, Phys. Lett. B 632 (2006) 297 [hep-ph/0512057] [INSPIRE].
  33. [33]
    I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].
  34. [34]
    Y.V. Kovchegov, Small x F(2) structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
  35. [35]
    A. Kovner and M. Lublinsky, Odderon and seven Pomerons: QCD Reggeon field theory from JIMWLK evolution, JHEP 02 (2007) 058 [hep-ph/0512316] [INSPIRE].
  36. [36]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].
  37. [37]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
  38. [38]
    J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].
  39. [39]
    A. Kovner and J.G. Milhano, Vector potential versus color charge density in low x evolution, Phys. Rev. D 61 (2000) 014012 [hep-ph/9904420] [INSPIRE].
  40. [40]
    A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].
  41. [41]
    H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].
  42. [42]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
  43. [43]
    E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].
  44. [44]
    E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].
  45. [45]
    T. Altinoluk, A. Kovner, E. Levin and M. Lublinsky, Reggeon Field Theory for Large Pomeron Loops, JHEP 04 (2014) 075 [arXiv:1401.7431] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Kovner and M. Lublinsky, In pursuit of Pomeron loops: The JIMWLK equation and the Wess-Zumino term, Phys. Rev. D 71 (2005) 085004 [hep-ph/0501198] [INSPIRE].
  47. [47]
    A. Kovner and M. Lublinsky, From target to projectile and back again: Selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].
  48. [48]
    I. Balitsky, High-energy effective action from scattering of QCD shock waves, Phys. Rev. D 72 (2005) 074027 [hep-ph/0507237] [INSPIRE].
  49. [49]
    Y. Hatta, E. Iancu, L. McLerran, A. Stasto and D.N. Triantafyllopoulos, Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A 764 (2006) 423 [hep-ph/0504182] [INSPIRE].
  50. [50]
    A. Kovner, M. Lublinsky and U. Wiedemann, From bubbles to foam: Dilute to dense evolution of hadronic wave function at high energy, JHEP 06 (2007) 075 [arXiv:0705.1713] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Altinoluk, A. Kovner, M. Lublinsky and J. Peressutti, QCD Reggeon Field Theory for every day: Pomeron loops included, JHEP 03 (2009) 109 [arXiv:0901.2559] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    F. Gelis, T. Lappi and R. Venugopalan, High energy factorization in nucleus-nucleus collisions, Phys. Rev. D 78 (2008) 054019 [arXiv:0804.2630] [INSPIRE].ADSGoogle Scholar
  53. [53]
    L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [INSPIRE].
  54. [54]
    L.L. Frankfurt and V.E. Sherman, Reggeization of Vector Meson and Vacuum Singularity in Renormalizable Yang-Mills Models, Sov. J. Nucl. Phys. 23 (1976) 581 [INSPIRE].Google Scholar
  55. [55]
    V.S. Fadin, M.I. Kotsky and R. Fiore, Gluon Reggeization in QCD in the next-to-leading order, Phys. Lett. B 359 (1995) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Bondarenko and L. Motyka, Solving effective field theory of interacting QCD Pomerons in the semi-classical approximation, Phys. Rev. D 75 (2007) 114015 [hep-ph/0605185] [INSPIRE].
  57. [57]
    A.H. Mueller and A.I. Shoshi, Small x physics beyond the Kovchegov equation, Nucl. Phys. B 692 (2004) 175 [hep-ph/0402193] [INSPIRE].
  58. [58]
    E. Iancu and D.N. Triantafyllopoulos, A Langevin equation for high energy evolution with Pomeron loops, Nucl. Phys. A 756 (2005) 419 [hep-ph/0411405] [INSPIRE].
  59. [59]
    E. Iancu and D.N. Triantafyllopoulos, Non-linear QCD evolution with improved triple-Pomeron vertices, Phys. Lett. B 610 (2005) 253 [hep-ph/0501193] [INSPIRE].
  60. [60]
    E. Iancu, G. Soyez and D.N. Triantafyllopoulos, On the probabilistic interpretation of the evolution equations with Pomeron loops in QCD, Nucl. Phys. A 768 (2006) 194 [hep-ph/0510094] [INSPIRE].
  61. [61]
    A.H. Mueller, A.I. Shoshi and S.M.H. Wong, Extension of the JIMWLK equation in the low gluon density region, Nucl. Phys. B 715 (2005) 440 [hep-ph/0501088] [INSPIRE].
  62. [62]
    E. Levin and M. Lublinsky, Balitsky’s hierarchy from Mueller’s dipole model and more about target correlations, Phys. Lett. B 607 (2005) 131 [hep-ph/0411121] [INSPIRE].
  63. [63]
    E. Levin and M. Lublinsky, Towards a symmetric approach to high energy evolution: Generating functional with Pomeron loops, Nucl. Phys. A 763 (2005) 172 [hep-ph/0501173] [INSPIRE].
  64. [64]
    A. Kormilitzin, E. Levin and A. Prygarin, Multiparticle production in the mean field approximation of high density QCD, Nucl. Phys. A 813 (2008) 1 [arXiv:0807.3413] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    E. Levin, J. Miller and A. Prygarin, Summing Pomeron loops in the dipole approach, Nucl. Phys. A 806 (2008) 245 [arXiv:0706.2944] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    E. Levin, Dipole-dipole scattering in CGC/saturation approach at high energy: summing Pomeron loops, JHEP 11 (2013) 039 [arXiv:1308.5052] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    D. Amati, L. Caneschi and R. Jengo, Summing Pomeron Trees, Nucl. Phys. B 101 (1975) 397 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    V. Alessandrini, D. Amati and R. Jengo, One-Dimensional Quantum Theory of the Pomeron, Nucl. Phys. B 108 (1976) 425 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    R. Jengo, Zero Slope Limit of the Pomeron Field Theory, Nucl. Phys. B 108 (1976) 447 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    D. Amati, M. Le Bellac, G. Marchesini and M. Ciafaloni, Reggeon Field Theory for α(0) > 1, Nucl. Phys. B 112 (1976) 107 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Ciafaloni, M. Le Bellac and G.C. Rossi, Reggeon Quantum Mechanics: A Critical Discussion, Nucl. Phys. B 130 (1977) 388 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    M. Ciafaloni, Instanton Contributions in Reggeon Quantum Mechanics, Nucl. Phys. B 146 (1978) 427 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    P. Rembiesa and A.M. Stasto, Algebraic models for the hierarchy structure of evolution equations at small x, Nucl. Phys. B 725 (2005) 251 [hep-ph/0503223] [INSPIRE].
  74. [74]
    A. Kovner and M. Lublinsky, More remarks on high energy evolution, Nucl. Phys. A 767 (2006) 171 [hep-ph/0510047] [INSPIRE].
  75. [75]
    A.I. Shoshi and B.-W. Xiao, Pomeron loops in zero transverse dimensions, Phys. Rev. D 73 (2006) 094014 [hep-ph/0512206] [INSPIRE].
  76. [76]
    M. Kozlov and E. Levin, Solution for the BFKL Pomeron Calculus in zero transverse dimensions, Nucl. Phys. A 779 (2006) 142 [hep-ph/0604039] [INSPIRE].
  77. [77]
    J.P. Blaizot, E. Iancu and D.N. Triantafyllopoulos, A zero-dimensional model for high-energy scattering in QCD, Nucl. Phys. A 784 (2007) 227 [hep-ph/0606253] [INSPIRE].
  78. [78]
    N. Armesto, S. Bondarenko, J.G. Milhano and P. Quiroga, Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD, JHEP 05 (2008) 103 [arXiv:0803.0820] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    E. Levin and A. Prygarin, The BFKL Pomeron Calculus in zero transverse dimension: Summation of the Pomeron loops and the generating functional for the multiparticle production processes, Eur. Phys. J. C 53 (2008) 385 [hep-ph/0701178] [INSPIRE].
  80. [80]
    A. Kovner and M. Lublinsky, Dense-dilute duality at work: Dipoles of the target, Phys. Rev. D 72 (2005) 074023 [hep-ph/0503155] [INSPIRE].
  81. [81]
    E. Levin and K. Tuchin, Solution to the evolution equation for high parton density QCD, Nucl. Phys. B 573 (2000) 833 [hep-ph/9908317] [INSPIRE].
  82. [82]
    M.A. Braun and A. Tarasov, BFKL Pomeron propagator in the external field of the nucleus, Nucl. Phys. B 851 (2011) 533 [arXiv:1103.1747] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  83. [83]
    M.A. Braun and A.N. Tarasov, BFKL Pomeron in the external field of the nucleus in (2 + 1)-dimensional QCD, Nucl. Phys. B 863 (2012) 495 [arXiv:1204.6066] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  84. [84]
    S. Bondarenko, L. Motyka, A.H. Mueller, A.I. Shoshi and B.W. Xiao, On the equivalence of Reggeon field theory in zero transverse dimensions and reaction-diffusion processes, Eur. Phys. J. C 50 (2007) 593 [hep-ph/0609213] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Alex Kovner
    • 1
  • Eugene Levin
    • 2
    • 3
  • Michael Lublinsky
    • 4
    • 1
    Email author
  1. 1.Physics DepartmentUniversity of ConnecticutStorrsUSA
  2. 2.Departemento de Fısica, Universidad Técnica Federico Santa Marıa, and Centro Cientıfico-Tecnológico de ValparaısoValparaísoChile
  3. 3.Department of Particle PhysicsTel Aviv UniversityTel AvivIsrael
  4. 4.Physics DepartmentBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations