Advertisement

Eternal higher spin black holes: a thermofield Interpretation

  • Alejandra Castro
  • Nabil IqbalEmail author
  • Eva Llabrés
Open Access
Regular Article - Theoretical Physics

Abstract

We study Lorentzian eternal black holes in the Chern-Simons sector of AdS3 higher spin gravity. We probe such black holes using bulk Wilson lines and motivate new regularity conditions that must be obeyed by the bulk connections in order for the geometry to be consistent with an interpretation as a thermofield state in the dual CFT2. We demonstrate that any higher spin black hole may be placed in a gauge that satisfies these conditions: this is the Chern-Simons analogue of the construction of Kruskal coordinates that permit passage through the black hole horizon. We also argue that the Wilson line provides a higher-spin notion of causality in higher spin gravity that can be used to associate a Penrose diagram with the black hole. We present some applications of the formalism, including a study of the time-dependent entanglement entropy arising from the higher spin black hole interior and evidence for an emergent AdS2 region in the extremal limit.

Keywords

AdS-CFT Correspondence Conformal and W Symmetry Wilson ’t Hooft and Polyakov loops Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Ammon, A. Castro and N. Iqbal, Wilson lines and entanglement entropy in higher spin gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J. de Boer and J.I. Jottar, Entanglement entropy and higher spin holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher spin entanglement and W N conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Bañados, R. Canto and S. Theisen, Higher spin black holes in three dimensions: remarks on asymptotics and regularity, Phys. Rev. D 94 (2016) 024002 [arXiv:1601.05827] [INSPIRE].ADSGoogle Scholar
  6. [6]
    D. Engelhardt, B. Freivogel and N. Iqbal, Electric fields and quantum wormholes, Phys. Rev. D 92 (2015) 064050 [arXiv:1504.06336] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Harlow, Wormholes, emergent gauge fields and the weak gravity conjecture, JHEP 01 (2016) 122 [arXiv:1510.07911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Guica and D.L. Jafferis, On the construction of charged operators inside an eternal black hole, arXiv:1511.05627 [INSPIRE].
  9. [9]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: A review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].CrossRefzbMATHGoogle Scholar
  12. [12]
    C. Bunster, M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Generalized black holes in three-dimensional spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. de Boer and J.I. Jottar, Boundary conditions and partition functions in higher spin AdS 3 /CFT 2, JHEP 04 (2016) 107 [arXiv:1407.3844] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. de Boer, Six-dimensional supergravity on S 3 × AdS 3 and 2 − D conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W -symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black holes and singularity resolution in higher spin gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    E. Hijano and P. Kraus, A new spin on entanglement entropy, JHEP 12 (2014) 041 [arXiv:1406.1804] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Bañados, R. Canto and S. Theisen, The action for higher spin black holes in three dimensions, JHEP 07 (2012) 147 [arXiv:1204.5105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Perez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: black holes, global charges and thermodynamics, Phys. Lett. B 726 (2013) 444 [arXiv:1207.2844] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    G. Compére, J.I. Jottar and W. Song, Observables and microscopic entropy of higher spin black holes, JHEP 11 (2013) 054 [arXiv:1308.2175] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Bañados, A. Castro, A. Faraggi and J.I. Jottar, Extremal higher spin black holes, JHEP 04 (2016) 077 [arXiv:1512.00073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J.R. David, M. Ferlaino and S.P. Kumar, Thermodynamics of higher spin black holes in 3D, JHEP 11 (2012) 135 [arXiv:1210.0284] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    P. Kraus and E. Perlmutter, Probing higher spin black holes, JHEP 02 (2013) 096 [arXiv:1209.4937] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    A. Hegde, P. Kraus and E. Perlmutter, General results for higher spin Wilson lines and entanglement in Vasiliev theory, JHEP 01 (2016) 176 [arXiv:1511.05555] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Castro, D.M. Hofman and N. Iqbal, Entanglement entropy in warped conformal field theories, JHEP 02 (2016) 033 [arXiv:1511.00707] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 [arXiv:1405.2792] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  38. [38]
    P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from CFT, JHEP 06 (2014) 096 [arXiv:1402.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    J. Knuttel, Entanglement entropy and black holes in (2 + 1)-dimensional higher spin gravity, Master’s thesis, University of Amsterdam, The Netherlands (2014).Google Scholar
  42. [42]
    A. Castro and E. Llabrés, Unravelling holographic entanglement entropy in higher spin theories, JHEP 03 (2015) 124 [arXiv:1410.2870] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    M.R. Gaberdiel, K. Jin and E. Perlmutter, Probing higher spin black holes from CFT, JHEP 10 (2013) 045 [arXiv:1307.2221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    P. Caputa, G. Mandal and R. Sinha, Dynamical entanglement entropy with angular momentum and U(1) charge, JHEP 11 (2013) 052 [arXiv:1306.4974] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Mandal, R. Sinha and N. Sorokhaibam, The inside outs of AdS 3 /CFT 2 : exact AdS wormholes with entangled CFT duals, JHEP 01 (2015) 036 [arXiv:1405.6695] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].
  48. [48]
    H. Liu and S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].ADSGoogle Scholar
  50. [50]
    G. Mandal, R. Sinha and N. Sorokhaibam, Thermalization with chemical potentials and higher spin black holes, JHEP 08 (2015) 013 [arXiv:1501.04580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    P. Caputa et al., Scrambling time from local perturbations of the eternal BTZ black hole, JHEP 08 (2015) 011 [arXiv:1503.08161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, arXiv:1503.01409 [INSPIRE].
  54. [54]
    E. Perlmutter, Bounding the space of holographic CFTs with chaos, arXiv:1602.08272 [INSPIRE].
  55. [55]
    N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T. Faulkner et al., Holographic non-Fermi liquid fixed points, Phil. Trans. Roy. Soc. A 369 (2011) 1640 [arXiv:1101.0597].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Holographic conformal partial waves as gravitational open Wilson networks, JHEP 06 (2016) 119 [arXiv:1602.02962] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    D. Melnikov, A. Mironov and A. Morozov, On skew τ -functions in higher spin theory, JHEP 05 (2016) 027 [arXiv:1602.06233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D. Harlow, Jerusalem lectures on black holes and quantum information, Rev. Mod. Phys. 88 (2016) 15002 [arXiv:1409.1231] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamNetherlands

Personalised recommendations