Advertisement

Cornering diphoton resonance models at the LHC

  • Mihailo BackovićEmail author
  • Suchita Kulkarni
  • Alberto Mariotti
  • Enrico Maria Sessolo
  • Michael Spannowsky
Open Access
Regular Article - Theoretical Physics

Abstract

We explore the ability of the high luminosity LHC to test models which can explain the 750 GeV diphoton excess. We focus on a wide class of models where a 750 GeV singlet scalar couples to Standard Model gauge bosons and quarks, as well as dark matter. Including both gluon and photon fusion production mechanisms, we show that LHC searches in channels correlated with the diphoton signal will be able to probe wide classes of diphoton models with \( \mathrm{\mathcal{L}} \) ∼ 3000 fb−1 of data. Furthermore, models in which the scalar is a portal to the dark sector can be cornered with as little as \( \mathrm{\mathcal{L}} \) ∼ 30 fb−1.

Keywords

Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081 (2015).
  2. [2]
    ATLAS collaboration, Search for resonances in diphoton events with the ATLAS detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-018 (2016).
  3. [3]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015).
  4. [4]
    CMS collaboration, Search for new physics in high mass diphoton events in 3.3 fb −1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV and combined interpretation of searches at 8 TeV and 13 TeV, CMS-PAS-EXO-16-018 (2016).
  5. [5]
    I. Low and J. Lykken, Implications of gauge invariance on a heavy diphoton resonance, arXiv:1512.09089 [INSPIRE].
  6. [6]
    J.F. Kamenik, B.R. Safdi, Y. Soreq and J. Zupan, Comments on the diphoton excess: critical reappraisal of effective field theory interpretations, JHEP 07 (2016) 042 [arXiv:1603.06566] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Backovic, A. Mariotti and D. Redigolo, Di-photon excess illuminates dark matter, JHEP 03 (2016) 157 [arXiv:1512.04917] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Barducci, A. Goudelis, S. Kulkarni and D. Sengupta, One jet to rule them all: monojet constraints and invisible decays of a 750 GeV diphoton resonance, JHEP 05 (2016) 154 [arXiv:1512.06842] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Mambrini, G. Arcadi and A. Djouadi, The LHC diphoton resonance and dark matter, Phys. Lett. B 755 (2016) 426 [arXiv:1512.04913] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. D’Eramo, J. de Vries and P. Panci, A 750 GeV portal: LHC phenomenology and dark matter candidates, JHEP 05 (2016) 089 [arXiv:1601.01571] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    X.-J. Bi, Q.-F. Xiang, P.-F. Yin and Z.-H. Yu, The 750 GeV diphoton excess at the LHC and dark matter constraints, Nucl. Phys. B 909 (2016) 43 [arXiv:1512.06787] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    R. Franceschini et al., What is the γγ resonance at 750 GeV?, JHEP 03 (2016) 144 [arXiv:1512.04933] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Falkowski, O. Slone and T. Volansky, Phenomenology of a 750 GeV singlet, JHEP 02 (2016) 152 [arXiv:1512.05777] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Berthier, J.M. Cline, W. Shepherd and M. Trott, Effective interpretations of a diphoton excess, JHEP 04 (2016) 084 [arXiv:1512.06799] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.S. Gupta, S. Jäger, Y. Kats, G. Perez and E. Stamou, Interpreting a 750 GeV diphoton resonance, arXiv:1512.05332 [INSPIRE].
  16. [16]
    C. Csáki, J. Hubisz and J. Terning, Minimal model of a diphoton resonance: production without gluon couplings, Phys. Rev. D 93 (2016) 035002 [arXiv:1512.05776] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Csáki, J. Hubisz, S. Lombardo and J. Terning, Gluon versus photon production of a 750 GeV diphoton resonance, Phys. Rev. D 93 (2016) 095020 [arXiv:1601.00638] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The production of a diphoton resonance via photon-photon fusion, JHEP 03 (2016) 182 [arXiv:1601.07187] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Abel and V.V. Khoze, Photo-production of a 750 GeV di-photon resonance mediated by Kaluza-Klein leptons in the loop, JHEP 05 (2016) 063 [arXiv:1601.07167] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Fichet, G. von Gersdorff and C. Royon, Scattering light by light at 750 GeV at the LHC, Phys. Rev. D 93 (2016) 075031 [arXiv:1512.05751] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Jaeckel, M. Jankowiak and M. Spannowsky, LHC probes the hidden sector, Phys. Dark Univ. 2 (2013) 111 [arXiv:1212.3620] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    ATLAS collaboration, Search for new resonances in W γ and Zγ final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 428 [arXiv:1407.8150] [INSPIRE].
  24. [24]
    ATLAS collaboration, Search for heavy resonances decaying to a Z boson and a photon in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-010 (2016).
  25. [25]
    ATLAS collaboration, G. Aad et al., Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930].
  26. [26]
    ATLAS collaboration, Search for high-mass resonances decaying into a Z boson pair in the ℓℓνν final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-012 (2016).
  27. [27]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].
  28. [28]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a pair of W bosons in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-021 (2016).
  29. [29]
    CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 111 (2013) 211804 [arXiv:1309.2030] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for heavy particles decaying to pairs of highly-boosted top quarks using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-014 (2016).
  31. [31]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
  32. [32]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, arXiv:1604.07773 [INSPIRE].
  33. [33]
    A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    ATLAS collaboration, Search for diboson resonances in the ννqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-068 (2015).
  36. [36]
    ATLAS collaboration, Search for diboson resonances in the llqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-071 (2015).
  37. [37]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  38. [38]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, Phys. Rev. D 93 (2016) 075020 [arXiv:1512.04928] [INSPIRE].ADSGoogle Scholar
  41. [41]
    B. Bellazzini, R. Franceschini, F. Sala and J. Serra, Goldstones in diphotons, JHEP 04 (2016) 072 [arXiv:1512.05330] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Djouadi, J. Ellis and J. Quevillon, Interference effects in the decays of spin-zero resonances into γγ and \( t\overline{t} \), JHEP 07 (2016) 105 [arXiv:1605.00542] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B. Hespel, F. Maltoni and E. Vryonidou, Signal background interference effects in heavy scalar production and decay to a top-anti-top pair, arXiv:1606.04149 [INSPIRE].
  44. [44]
    R. Sato and K. Tobioka, LHC future prospects of the 750 GeV resonance, arXiv:1605.05366 [INSPIRE].
  45. [45]
    J.M. No, Is it SU(2)L or just U(1)Y ? 750 GeV di-photon probes of the electroweak nature of new states, arXiv:1605.05900 [INSPIRE].
  46. [46]
    A. Thamm, R. Torre and A. Wulzer, Future tests of Higgs compositeness: direct vs. indirect, JHEP 07 (2015) 100 [arXiv:1502.01701] [INSPIRE].
  47. [47]
    D. Buttazzo, F. Sala and A. Tesi, Singlet-like Higgs bosons at present and future colliders, JHEP 11 (2015) 158 [arXiv:1505.05488] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.W. Sterling. personal communication.Google Scholar
  49. [49]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
  50. [50]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-015 (2016).
  51. [51]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  52. [52]
    ATLAS collaboration, Search for new phenomena in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-070 (2015).
  53. [53]
    ATLAS collaboration, Search for resonant diboson production in the \( \ell \ell q\overline{q} \) final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 69 [arXiv:1409.6190] [INSPIRE].
  54. [54]
    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state from pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 412 [arXiv:1506.00285] [INSPIRE].
  55. [55]
    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-017 (2016).
  56. [56]
    ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Mihailo Backović
    • 1
    Email author
  • Suchita Kulkarni
    • 2
  • Alberto Mariotti
    • 3
  • Enrico Maria Sessolo
    • 4
  • Michael Spannowsky
    • 5
  1. 1.Center for Cosmology, Particle Physics and Phenomenology (CP3)Universite Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Institute of High Energy PhysicsAustrian Academy of SciencesViennaAustria
  3. 3.Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay InstitutesBrusselsBelgium
  4. 4.National Centre for Nuclear ResearchWarsawPoland
  5. 5.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations