Complete action for open superstring field theory with cyclic A structure

Open Access
Regular Article - Theoretical Physics

Abstract

We construct a gauge invariant action for the Neveu-Schwarz and Ramond sectors of open superstring field theory realizing a cyclic A structure, providing the first complete and fully explicit solution to the classical Batalin-Vilkovisky master equation in superstring field theory. We also demonstrate the equivalence of our action to the Wess-Zumino-Witten-based construction of Kunitomo and one of the authors.

Keywords

String Field Theory Superstrings and Heterotic Strings 

References

  1. [1]
    H. Kunitomo and Y. Okawa, Complete action for open superstring field theory, PTEP 2016 (2016) 023B01 [arXiv:1508.00366] [INSPIRE].
  2. [2]
    Y. Kazama, A. Neveu, H. Nicolai and P.C. West, Symmetry Structures of Superstring Field Theories, Nucl. Phys. B 276 (1986) 366 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    Y. Kazama, A. Neveu, H. Nicolai and P.C. West, Space-time Supersymmetry of the Covariant Superstring, Nucl. Phys. B 278 (1986) 833 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Terao and S. Uehara, Gauge Invariant Actions and Gauge Fixed Actions of Free Superstring Field Theory, Phys. Lett. B 173 (1986) 134 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J.P. Yamron, A Gauge Invariant Action for the Free Ramond String, Phys. Lett. B 174 (1986) 69 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    T. Kugo and H. Terao, New Gauge Symmetries in Witten’s Ramond String Field Theory, Phys. Lett. B 208 (1988) 416 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Belopolsky, Picture changing operators in supergeometry and superstring theory, hep-th/9706033 [INSPIRE].
  8. [8]
    M. Kohriki, T. Kugo and H. Kunitomo, Gauge Fixing of Modified Cubic Open Superstring Field Theory, Prog. Theor. Phys. 127 (2012) 243 [arXiv:1111.4912] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    E. Witten, Interacting Field Theory of Open Superstrings, Nucl. Phys. B 276 (1986) 291 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Sen, Gauge Invariant 1PI Effective Superstring Field Theory: Inclusion of the Ramond Sector, JHEP 08 (2015) 025 [arXiv:1501.00988] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Sen, BV Master Action for Heterotic and Type II String Field Theories, JHEP 02 (2016) 087 [arXiv:1508.05387] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439] [hep-th/9503099] [INSPIRE].
  13. [13]
    N. Berkovits, A new approach to superstring field theory, Fortsch. Phys. 48 (2000) 31 [hep-th/9912121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    N. Berkovits, A. Sen and B. Zwiebach, Tachyon condensation in superstring field theory, Nucl. Phys. B 587 (2000) 147 [hep-th/0002211] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    T. Erler, Marginal Solutions for the Superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    E. Fuchs and M. Kroyter, Marginal deformation for the photon in superstring field theory, JHEP 11 (2007) 005 [arXiv:0706.0717] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    T. Noumi and Y. Okawa, Solutions from boundary condition changing operators in open superstring field theory, JHEP 12 (2011) 034 [arXiv:1108.5317] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    T. Erler, Analytic solution for tachyon condensation in Berkovits’ open superstring field theory, JHEP 11 (2013) 007 [arXiv:1308.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Matsunaga, Construction of a Gauge-Invariant Action for Type II Superstring Field Theory, arXiv:1305.3893 [INSPIRE].
  24. [24]
    H. Matsunaga, Nonlinear gauge invariance and WZW-like action for NS-NS superstring field theory, JHEP 09 (2015) 011 [arXiv:1407.8485] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    H. Kunitomo, The Ramond Sector of Heterotic String Field Theory, PTEP 2014 (2014) 043B01 [arXiv:1312.7197] [INSPIRE].
  27. [27]
    H. Kunitomo, First-Order Equations of Motion for Heterotic String Field Theory, PTEP 2014 (2014) 093B07 [arXiv:1407.0801] [INSPIRE].
  28. [28]
    H. Kunitomo, Symmetries and Feynman rules for the Ramond sector in heterotic string field theory, PTEP 2015 (2015) 093B02 [arXiv:1506.08926] [INSPIRE].
  29. [29]
    M. Kroyter, Y. Okawa, M. Schnabl, S. Torii and B. Zwiebach, Open superstring field theory I: gauge fixing, ghost structure and propagator, JHEP 03 (2012) 030 [arXiv:1201.1761] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    N. Berkovits, Constrained BV Description of String Field Theory, JHEP 03 (2012) 012 [arXiv:1201.1769] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    S. Torii, Validity of Gauge-Fixing Conditions and the Structure of Propagators in Open Superstring Field Theory, JHEP 04 (2012) 050 [arXiv:1201.1762] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    S. Torii, Gauge fixing of open superstring field theory in the Berkovits non-polynomial formulation, Prog. Theor. Phys. Suppl. 188 (2011) 272 [arXiv:1201.1763] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    Y. Iimori and S. Torii, Relation between the Reducibility Structures and between the Master Actions in the Witten Formulation and the Berkovits Formulation of Open Superstring Field Theory, JHEP 10 (2015) 127 [arXiv:1507.08757] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    N. Berkovits, M. Kroyter, Y. Okawa, M. Schnabl, S. Torii and B. Zwiebach, Open superstring field theory II: approaches to the BV master action, to appear.Google Scholar
  35. [35]
    B. Jurčo and K. Muenster, Type II Superstring Field Theory: Geometric Approach and Operadic Description, JHEP 04 (2013) 126 [arXiv:1303.2323] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  36. [36]
    T. Erler, S. Konopka and I. Sachs, Resolving Witten‘s superstring field theory, JHEP 04 (2014) 150 [arXiv:1312.2948] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    T. Erler, S. Konopka and I. Sachs, NS-NS Sector of Closed Superstring Field Theory, JHEP 08 (2014) 158 [arXiv:1403.0940] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    T. Erler, S. Konopka and I. Sachs, Ramond Equations of Motion in Superstring Field Theory, JHEP 11 (2015) 199 [arXiv:1506.05774] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    Y. Iimori, T. Noumi, Y. Okawa and S. Torii, From the Berkovits formulation to the Witten formulation in open superstring field theory, JHEP 03 (2014) 044 [arXiv:1312.1677] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    S. Konopka, The S-matrix of superstring field theory, JHEP 11 (2015) 187 [arXiv:1507.08250] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    B. Zwiebach, Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Sen and B. Zwiebach, Quantum background independence of closed string field theory, Nucl. Phys. B 423 (1994) 580 [hep-th/9311009] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    A. Sen and B. Zwiebach, Background independent algebraic structures in closed string field theory, Commun. Math. Phys. 177 (1996) 305 [hep-th/9408053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    T. Erler, Y. Okawa and T. Takezaki, A structure from the Berkovits formulation of open superstring field theory, arXiv:1505.01659 [INSPIRE].
  45. [45]
    T. Erler, Relating Berkovits and A superstring field theories; small Hilbert space perspective, JHEP 10 (2015) 157 [arXiv:1505.02069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    T. Erler, Relating Berkovits and A superstring field theories; large Hilbert space perspective, JHEP 02 (2016) 121 [arXiv:1510.00364] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    S. Konopka and I. Sachs, Open Superstring Field Theory on the Restricted Hilbert Space, JHEP 04 (2016) 164 [arXiv:1602.02583] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    H. Matsunaga, Comments on complete actions for open superstring field theory, arXiv:1510.06023 [INSPIRE].
  49. [49]
    M. Henneaux, BRST Cohomology of the Fermionic String, Phys. Lett. B 183 (1987) 59 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    E. Witten, Superstring Perturbation Theory Revisited, arXiv:1209.5461 [INSPIRE].
  51. [51]
    C. Wendt, Scattering Amplitudes and Contact Interactions in Witten’s Superstring Field Theory, Nucl. Phys. B 314 (1989) 209 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    K. Ohmori and Y. Okawa, to appear.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Arnold Sommerfeld CenterLudwig-Maximilians UniversityMunichGermany
  2. 2.Institute of PhysicsThe University of TokyoTokyoJapan

Personalised recommendations