Advertisement

Heavy-quark mass effects in Higgs plus jets production

  • R. Frederix
  • S. Frixione
  • E. Vryonidou
  • M. Wiesemann
Open Access
Regular Article - Theoretical Physics

Abstract

We study the production of a Standard Model Higgs boson in the gluon-fusion channel at the 13 TeV LHC. Our results are accurate to the next-to-leading order in QCD, bar for the lack of some two-loop amplitudes, for up to two extra jets and are matched to the Pythia8 Monte Carlo. We address the impact, at the level of inclusive rates and of differential distributions, of the merging of samples characterised by different final-state multiplicities, and of the effects induced by top and bottom masses through heavy-quark loop diagrams. We find that both the merging and the heavy-quark masses must be included in the calculation in order to realistically predict observables of experimental interest.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440.ADSCrossRefGoogle Scholar
  4. [4]
    M. Spira, HIGLU: A program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
  5. [5]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  7. [7]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].
  8. [8]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
  9. [9]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].
  10. [10]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    ATLAS collaboration, Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the H → γγ decay channel at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 753 (2016) 69 [arXiv:1508.02507] [INSPIRE].
  12. [12]
    ATLAS collaboration, Measurements of the Total and Differential Higgs Boson Production Cross sections Combining the H → γγ and HZZ∗ → 4ℓ Decay Channels at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 115 (2015) 091801 [arXiv:1504.05833] [INSPIRE].
  13. [13]
    ATLAS collaboration, Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 234 [arXiv:1408.3226] [INSPIRE].
  14. [14]
    ATLAS collaboration, Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at \( \sqrt{s}=8 \) TeV with ATLAS, JHEP 09 (2014) 112 [arXiv:1407.4222] [INSPIRE].
  15. [15]
    CMS collaboration, Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 04 (2016) 005 [arXiv:1512.08377] [INSPIRE].
  16. [16]
    CMS collaboration, Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 13 [arXiv:1508.07819] [INSPIRE].
  17. [17]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Wiesemann, A Brief Theory Overview of Higgs Physics at the LHC, Acta Phys. Polon. B 46 (2015) 2079 [arXiv:1511.07346] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Grazzini, Standard Model Theory for Collider Physics, PoS(EPS-HEP2015)007 [arXiv:1512.00647] [INSPIRE].
  22. [22]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  23. [23]
    R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α s4, JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Neumann and M. Wiesemann, Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO, JHEP 11 (2014) 150 [arXiv:1408.6836] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Mantler and M. Wiesemann, Top- and bottom-mass effects in hadronic Higgs production at small transverse momenta through LO+NLL, Eur. Phys. J. C 73 (2013) 2467 [arXiv:1210.8263] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Grazzini and H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC, JHEP 09 (2013) 129 [arXiv:1306.4581] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Banfi, P.F. Monni and G. Zanderighi, Quark masses in Higgs production with a jet veto, JHEP 01 (2014) 097 [arXiv:1308.4634] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev. D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss and T. Plehn, Mass Effects in the Higgs-Gluon Coupling: Boosted vs Off-Shell Production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM, JHEP 02 (2012) 088 [arXiv:1111.2854] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber and C.D. White, The MCaNLO 4.08 Event Generator, User manual, unpublished (2012).Google Scholar
  32. [32]
    H. Mantler and M. Wiesemann, Hadronic Higgs production through NLO + PS in the SM, the 2HDM and the MSSM, Eur. Phys. J. C 75 (2015) 257 [arXiv:1504.06625] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Hamilton, P. Nason and G. Zanderighi, Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator, JHEP 05 (2015) 140 [arXiv:1501.04637] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  36. [36]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  38. [38]
    R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [INSPIRE].
  39. [39]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].
  40. [40]
    S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001 [arXiv:1604.06447] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Melnikov and A. Penin, On the light quark mass effects in Higgs boson production in gluon fusion, JHEP 05 (2016) 172 [arXiv:1602.09020] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
  44. [44]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].
  45. [45]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  47. [47]
    P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 1211 (2012) 128] [arXiv:1203.0291] [INSPIRE].
  48. [48]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A.I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B 263 (1991) 107 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].
  51. [51]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    V. Hirschi and T. Peraro, Tensor integrand reduction via Laurent expansion, JHEP 06 (2016) 060 [arXiv:1604.01363] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  58. [58]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  61. [61]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    R. Frederix, S. Frixione, A. Papaefstathiou, S. Prestel and P. Torrielli, A study of multi-jet production in association with an electroweak vector boson, JHEP 02 (2016) 131 [arXiv:1511.00847] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni and P. Torrielli, Higgs production in association with bottom quarks, JHEP 02 (2015) 132 [arXiv:1409.5301] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    R.V. Harlander, H. Mantler and M. Wiesemann, Transverse momentum resummation for Higgs production via gluon fusion in the MSSM, JHEP 11 (2014) 116 [arXiv:1409.0531] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    E. Bagnaschi, R.V. Harlander, H. Mantler, A. Vicini and M. Wiesemann, Resummation ambiguities in the Higgs transverse-momentum spectrum in the Standard Model and beyond, JHEP 01 (2016) 090 [arXiv:1510.08850] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    E. Bagnaschi and A. Vicini, The Higgs transverse momentum distribution in gluon fusion as a multiscale problem, JHEP 01 (2016) 056 [arXiv:1505.00735] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    R. Frederix, S. Frixione and M. Mangano, unpublished.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • R. Frederix
    • 1
  • S. Frixione
    • 2
  • E. Vryonidou
    • 3
  • M. Wiesemann
    • 4
  1. 1.Physik Department T31Technische Universität MünchenGarchingGermany
  2. 2.INFN, Sezione di GenovaGenoaItaly
  3. 3.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Physik-Institut, Universität ZürichZurichSwitzerland

Personalised recommendations