Advertisement

Same sign di-lepton candles of the composite gluons

  • Aleksandr AzatovEmail author
  • Debtosh Chowdhury
  • Diptimoy Ghosh
  • Tirtha Sankar Ray
Open Access
Regular Article - Theoretical Physics

Abstract

Composite Higgs models, where the Higgs boson is identified with the pseudo-Nambu-Goldstone-Boson (pNGB) of a strong sector, typically have light composite fermions (top partners) to account for a light Higgs. This type of models, generically also predicts the existence of heavy vector fields (composite gluons) which appear as an octet of QCD. These composite gluons become very broad resonances once phase-space allows them to decay into two composite fermions. This makes their traditional experimental searches, which are designed to look for narrow resonances, quite ineffective. In this paper, we as an alternative, propose to utilize the impact of composite gluons on the production of top partners to constrain their parameter space. We place constraints on the parameters of the composite resonances using the 8 TeV LHC data and also assess the reach of the 14 TeV LHC. We find that the high luminosity LHC will be able to probe composite gluon masses up to ∼ 6 TeV, even in the broad resonance regime.

Keywords

Beyond Standard Model Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].
  6. [6]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  9. [9]
    A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    CMS collaboration, Inclusive search for a vector-like T quark with charge 2/3 in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 729 (2014) 149 [arXiv:1311.7667] [INSPIRE].
  15. [15]
    ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500] [INSPIRE].
  16. [16]
    J. Barnard, T. Gherghetta, A. Medina and T.S. Ray, Radiative corrections to the composite Higgs mass from a gluon partner, JHEP 10 (2013) 055 [arXiv:1307.4778] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].
  21. [21]
    G. Cacciapaglia, C. Csáki, J. Galloway, G. Marandella, J. Terning and A. Weiler, A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.L. Fitzpatrick, G. Perez and L. Randall, Flavor anarchy in a Randall-Sundrum model with 5D minimal flavor violation and a low Kaluza-Klein scale, Phys. Rev. Lett. 100 (2008) 171604 [arXiv:0710.1869] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Santiago, Minimal flavor protection: a new flavor paradigm in warped models, JHEP 12 (2008) 046 [arXiv:0806.1230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    C. Csáki, A. Falkowski and A. Weiler, A simple flavor protection for RS, Phys. Rev. D 80 (2009) 016001 [arXiv:0806.3757] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Ultra visible warped model from flavor triviality and improved naturalness, Phys. Rev. D 83 (2011) 115003 [arXiv:1007.0243] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E.M. Wagner, Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [INSPIRE].ADSGoogle Scholar
  28. [28]
    ATLAS collaboration, Search for anomalous production of events with same-sign dileptons and b jets in 14.3 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-051 (2013).
  29. [29]
    CMS collaboration, Search for top-quark partners with charge 5/3 in the same-sign dilepton final state, Phys. Rev. Lett. 112 (2014) 171801 [arXiv:1312.2391] [INSPIRE].
  30. [30]
    M. Chala, J. Juknevich, G. Perez and J. Santiago, The elusive gluon, JHEP 01 (2015) 092 [arXiv:1411.1771] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].
  32. [32]
    B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [INSPIRE].
  33. [33]
    B. Lillie, J. Shu and T.M.P. Tait, Kaluza-Klein gluons as a diagnostic of warped models, Phys. Rev. D 76 (2007) 115016 [arXiv:0706.3960] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    K. Kong, M. McCaskey and G.W. Wilson, Multi-lepton signals from the top-prime quark at the LHC, JHEP 04 (2012) 079 [arXiv:1112.3041] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N. Vignaroli, Z-peaked excess from heavy gluon decays to vectorlike quarks, Phys. Rev. D 91 (2015) 115009 [arXiv:1504.01768] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Greco and D. Liu, Hunting composite vector resonances at the LHC: naturalness facing data, JHEP 12 (2014) 126 [arXiv:1410.2883] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Backović, G. Perez, T. Flacke and S.J. Lee, LHC top partner searches beyond the 2 TeV mass region, arXiv:1409.0409 [INSPIRE].
  39. [39]
    A. Azatov, M. Salvarezza, M. Son and M. Spannowsky, Boosting top partner searches in composite Higgs models, Phys. Rev. D 89 (2014) 075001 [arXiv:1308.6601] [INSPIRE].ADSGoogle Scholar
  40. [40]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].
  41. [41]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunters guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  43. [43]
    O. Matsedonskyi, G. Panico and A. Wulzer, On the interpretation of top partners searches, JHEP 12 (2014) 097 [arXiv:1409.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].
  45. [45]
    A. Azatov, G. Panico, G. Perez and Y. Soreq, On the flavor structure of natural composite Higgs models & top flavor violation, JHEP 12 (2014) 082 [arXiv:1408.4525] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single vectorlike quark production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  52. [52]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  54. [54]
    ATLAS collaboration, Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum and jets at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 112011 [arXiv:1503.05425] [INSPIRE].
  55. [55]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
  58. [58]
    M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer and M. Wiedermann, HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR, Comput. Phys. Commun. 182 (2011) 1034 [arXiv:1007.1327] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 111 (2013) 211804 [arXiv:1309.2030] [INSPIRE].
  61. [61]
    ATLAS collaboration, A search for tt resonances in the lepton plus jets final state with ATLAS using 14 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-052 (2013).
  62. [62]
    A. Avetisyan and T. Bose, Search for top partners with charge 5e/3, arXiv:1309.2234.
  63. [63]
    CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041] [arXiv:1212.6194] [INSPIRE].
  64. [64]
    ATLAS collaboration, Searches for direct scalar top pair production in final states with two leptons using the stransverse mass variable and a multivariate analysis technique in \( \sqrt{s}=8 \) TeV pp collisions using 20.3 fb −1 of ATLAS data, ATLAS-CONF-2013-065 (2013).
  65. [65]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Biswas, D. Ghosh and S. Niyogi, Multi-leptons and top-jets in the hunt for gluinos in R-parity violating supersymmetry, JHEP 06 (2014) 012 [arXiv:1312.0549] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    P. Byakti and D. Ghosh, Magic messengers in gauge mediation and signal for 125 GeV boosted Higgs boson, Phys. Rev. D 86 (2012) 095027 [arXiv:1204.0415] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Aleksandr Azatov
    • 1
    Email author
  • Debtosh Chowdhury
    • 2
  • Diptimoy Ghosh
    • 2
    • 3
  • Tirtha Sankar Ray
    • 4
  1. 1.Theory Division, Physics DepartmentCERNGenevaSwitzerland
  2. 2.INFN — Sezione di RomaRomeItaly
  3. 3.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  4. 4.Department of PhysicsIndian Institute of TechnologyKharagpurIndia

Personalised recommendations