Advertisement

New AdS3 × S2 T-duals with \( \mathcal{N}=\left(0,4\right) \) supersymmetry

  • Yolanda LozanoEmail author
  • Niall T. Macpherson
  • Jesús Montero
  • Eoin Ó Colgáin
Open Access
Regular Article - Theoretical Physics

Abstract

It is well known that Hopf-fibre T-duality and uplift takes the D1-D5 near-horizon into a class of AdS3 × S2 geometries in 11D where the internal space is a Calabi-Yau three-fold. Moreover, supersymmetry dictates that Calabi-Yau is the only permissible SU(3)-structure manifold. Generalising this duality chain to non-Abelian isometries, a strong parallel exists, resulting in the first explicit example of a class of AdS3×S2 geometries with SU(2)-structure. Furthermore, the non-Abelian T-dual of AdS3×S3×S3×S1 results in a new supersymmetric AdS3 × S2 geometry, which falls outside of all known classifications. We explore the basic properties of the holographic duals associated to the new backgrounds. We compute the central charges and show that they are compatible with a large \( \mathcal{N}=4 \) superconformal algebra in the infra-red.

Keywords

Supersymmetry and Duality AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, AdS spacetimes from wrapped M 5 branes, JHEP 11 (2006) 053 [hep-th/0605146] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. Kim, K.K. Kim and N. Kim, 1/4-BPS M-theory bubbles with SO(3) × SO(4) symmetry, JHEP 08 (2007) 050 [arXiv:0706.2042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Gaddam, A. Gnecchi, S. Vandoren and O. Varela, Rholography, black holes and Scherk-Schwarz, JHEP 06 (2015) 058 [arXiv:1412.7325] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D. Joyce, Lectures on special Lagrangian geometry, math/0111111 [INSPIRE].
  9. [9]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Fayyazuddin and D.J. Smith, Localized intersections of M 5-branes and four-dimensional superconformal field theories, JHEP 04 (1999) 030 [hep-th/9902210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    E. ÓColgáin and B. Stefanski, Jr., A search for AdS 5 × S 2 IIB supergravity solutions dual to N =2 SCFTs, JHEP 10 (2011) 061 [arXiv:1107.5763] [INSPIRE].CrossRefzbMATHGoogle Scholar
  12. [12]
    R.A. Reid-Edwards and B. Stefanski Jr., On Type IIA geometries dual to N = 2 SCFTs, Nucl. Phys. B 849 (2011) 549 [arXiv:1011.0216] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Donos and J. Simon, The electrostatic view on M-theory LLM geometries, JHEP 01 (2011) 067 [arXiv:1010.3101] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    O. Aharony, L. Berdichevsky and M. Berkooz, 4D N = 2 superconformal linear quivers with type IIA duals, JHEP 08 (2012) 131 [arXiv:1206.5916] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    P.M. Petropoulos, K. Sfetsos and K. Siampos, Gravity duals of \( \mathcal{N}=2 \) superconformal field theories with no electrostatic description, JHEP 11 (2013) 118 [arXiv:1308.6583] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P.M. Petropoulos, K. Sfetsos and K. Siampos, Gravity duals of \( \mathcal{N}=2 \) SCFTs and asymptotic emergence of the electrostatic description, JHEP 09 (2014) 057 [arXiv:1406.0853] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    O.A.P. Mac Conamhna and E. Ó Colgáin, Supersymmetric wrapped membranes, AdS 2 spaces and bubbling geometries, JHEP 03 (2007) 115 [hep-th/0612196] [INSPIRE].
  19. [19]
    E. Ó Colgáin, J.-B. Wu and H. Yavartanoo, On the generality of the LLM geometries in M-theory, JHEP 04 (2011) 002 [arXiv:1010.5982] [INSPIRE].
  20. [20]
    E. Ó Colgáin, Beyond LLM in M-theory, JHEP 12 (2012) 023 [arXiv:1208.5979] [INSPIRE].
  21. [21]
    T. Ortiz, H. Samtleben and D. Tsimpis, Matrix model holography, JHEP 12 (2014) 096 [arXiv:1410.0487] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E. Ó Colgáin, J.-B. Wu and H. Yavartanoo, Supersymmetric AdS 3 × S 2 M-theory geometries with fluxes, JHEP 08 (2010) 114 [arXiv:1005.4527] [INSPIRE].
  23. [23]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    O. Kelekci, E. Ó Colgáin and J. Montero, work in progress.Google Scholar
  25. [25]
    G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, On non-abelian T-duality and new N =1 backgrounds, Phys. Lett. B 721 (2013) 342 [arXiv:1212.4840] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    K. Sfetsos and D.C. Thompson, New \( \mathcal{N}=1 \) supersymmetric AdS 5 backgrounds in type IIA supergravity, JHEP 11 (2014) 006 [arXiv:1408.6545] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    N.T. Macpherson, C. Núñez, L.A. Pando Zayas, V.G.J. Rodgers and C.A. Whiting, Type IIB supergravity solutions with AdS 5 from Abelian and non-Abelian T dualities, JHEP 02 (2015) 040 [arXiv:1410.2650] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    Y. Bea et al., Compactifications of the Klebanov-Witten CFT and new AdS 3 backgrounds, JHEP 05 (2015) 062 [arXiv:1503.07527] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Barranco, J. Gaillard, N.T. Macpherson, C. Núñez and D.C. Thompson, G-structures and flavouring non-Abelian T-duality, JHEP 08 (2013) 018 [arXiv:1305.7229] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N.T. Macpherson, Non-Abelian T-duality, G 2 -structure rotation and holographic duals of N =1 Chern-Simons theories, JHEP 11 (2013) 137 [arXiv:1310.1609] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    J. Gaillard, N.T. Macpherson, C. Núñez and D.C. Thompson, Dualising the baryonic branch: dynamic SU(2) and confining backgrounds in IIA, Nucl. Phys. B 884 (2014) 696 [arXiv:1312.4945] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    E. Caceres, N.T. Macpherson and C. Núñez, New type IIB backgrounds and aspects of their field theory duals, JHEP 08 (2014) 107 [arXiv:1402.3294] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K.S. Kooner and S. Zacarías, Non-abelian T-dualizing the resolved conifold with regular and fractional D3-branes, arXiv:1411.7433 [INSPIRE].
  34. [34]
    S. Zacarías, Semiclassical strings and non-abelian T-duality, Phys. Lett. B 737 (2014) 90 [arXiv:1401.7618] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    P.M. Pradhan, Oscillating strings and non-abelian T-dual Klebanov-Witten background, Phys. Rev. D 90 (2014) 046003 [arXiv:1406.2152] [INSPIRE].ADSGoogle Scholar
  36. [36]
    E. Gevorgyan and G. Sarkissian, Defects, non-abelian T-duality and the Fourier-Mukai transform of the Ramond-Ramond fields, JHEP 03 (2014) 035 [arXiv:1310.1264] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    Y. Lozano, E. Ó Colgáin, D. Rodriguez-Gomez and K. Sfetsos, Supersymmetric AdS 6 via T duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Passias, A note on supersymmetric AdS 6 solutions of massive type IIA supergravity, JHEP 01 (2013) 113 [arXiv:1209.3267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS 6 solutions of type-II supergravity, JHEP 11 (2014) 099 [Erratum ibid. 1505 (2015) 012] [arXiv:1406.0852] [INSPIRE].
  40. [40]
    H. Kim, N. Kim and M. Suh, Supersymmetric AdS 6 solutions of type IIB supergravity, arXiv:1506.05480 [INSPIRE].
  41. [41]
    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    Y. Lozano, N.T. Macpherson and J. Montero, A \( \mathcal{N}=2 \) supersymmetric AdS 4 solution in M-theory with purely magnetic flux, arXiv:1507.02660 [INSPIRE].
  43. [43]
    M. Pernici and E. Sezgin, Spontaneous compactification of seven-dimensional supergravity theories, Class. Quant. Grav. 2 (1985) 673 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    Y. Lozano, E. Ó Colgáin and D. Rodriguez-Gomez, Hints of 5D fixed point theories from non-abelian T-duality, JHEP 05 (2014) 009 [arXiv:1311.4842] [INSPIRE].
  46. [46]
    T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    T.R. Araujo and H. Nastase, \( \mathcal{N}=1 \) SUSY backgrounds with an AdS factor from non-Abelian T duality, Phys. Rev. D 91 (2015) 126015 [arXiv:1503.00553] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the AdS/CFT correspondence:new N = 1 backgrounds, Nucl. Phys. B 873 (2013) 1 [arXiv:1301.6755] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M 5-branes on Riemann surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].ADSGoogle Scholar
  51. [51]
    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M 5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    O. Kelekci, Y. Lozano, N.T. Macpherson and E. Ó Colgáin, Supersymmetry and non-Abelian T-duality in type-II supergravity, Class. Quant. Grav. 32 (2015) 035014 [arXiv:1409.7406] [INSPIRE].
  54. [54]
    Y. Lozano and N.T. Macpherson, A new AdS 4 /CFT 3 dual with extended SUSY and a spectral flow, JHEP 11 (2014) 115 [arXiv:1408.0912] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    J. Murugan and H. Nastase, A nonabelian particle-vortex duality, arXiv:1506.04090 [INSPIRE].
  56. [56]
    P. Karndumri and E. Ó Colgáin, 3D Supergravity from wrapped D3-branes, JHEP 10 (2013) 094 [arXiv:1307.2086] [INSPIRE].
  57. [57]
    P.M. Cowdall and P.K. Townsend, Gauged supergravity vacua from intersecting branes, Phys. Lett. B 429 (1998) 281 [Erratum ibid. B 434 (1998) 458] [hep-th/9801165] [INSPIRE].
  58. [58]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS 3 × S 3 × S 3 × S 1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2 − D N =4 superconformal symmetry, Adv. Theor. Math. Phys. 3(1999) 577 [hep-th/9904073] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, Anti-de Sitter space-times and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Supersymmetry of rotating branes, Phys. Rev. D 59 (1998) 025001 [hep-th/9809065] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    D. Tong, The holographic dual of AdS 3 × S 3 × S 3 × S 1, JHEP 04 (2014) 193 [arXiv:1402.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS 3 × S 3 × S 3 × S 1, Phys. Lett. B 449 (1999) 180 [hep-th/9811245] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    A. Sevrin, W. Troost and A. Van Proeyen, Superconformal algebras in two-dimensions with N =4, Phys. Lett. B 208 (1988) 447[INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    G. Itsios, Y. Lozano, E. Ó Colgáin and K. Sfetsos, Non-abelian T-duality and consistent truncations in type-II supergravity, JHEP 08 (2012) 132 [arXiv:1205.2274] [INSPIRE].
  67. [67]
    E. Alvarez, L. Álvarez-Gaumé, J.L.F. Barbon and Y. Lozano, Some global aspects of duality in string theory, Nucl. Phys. B 415 (1994) 71 [hep-th/9309039] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    S.F. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B 568 (2000) 145 [hep-th/9907152] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    A. Donos and J.P. Gauntlett, Flowing from AdS 5 to AdS 3 with T 1,1, JHEP 08 (2014) 006 [arXiv:1404.7133] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    Y. Kosmann, A note on Lie-Lorentz derivatives, Annali Mat. Pura Appl. 91 (1972) 317.MathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    J. Jeong, O. Kelekci and E. Ó Colgáin, An alternative IIB embedding of F(4) gauged supergravity, JHEP 05 (2013) 079 [arXiv:1302.2105] [INSPIRE].
  75. [75]
    Y. Lozano, E. Ó Colgáin, K. Sfetsos and D.C. Thompson, Non-abelian T-duality, Ramond fields and coset geometries, JHEP 06 (2011) 106 [arXiv:1104.5196] [INSPIRE].
  76. [76]
    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    F. Apruzzi, M. Fazzi, A. Passias and A. Tomasiello, Supersymmetric AdS 5 solutions of massive IIA supergravity, JHEP 06 (2015) 195 [arXiv:1502.06620] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  78. [78]
    C. Bachas, E. D’Hoker, J. Estes and D. Krym, M-theory solutions invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys. 62 (2014) 207 [arXiv:1312.5477].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    M.J. Duff, H. Lü and C.N. Pope, AdS 3 × S 3 (un)twisted and squashed and an O(2, 2, Z) multiplet of dyonic strings, Nucl. Phys. B 544 (1999) 145 [hep-th/9807173] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Yolanda Lozano
    • 1
    Email author
  • Niall T. Macpherson
    • 2
  • Jesús Montero
    • 1
  • Eoin Ó Colgáin
    • 3
    • 4
    • 5
  1. 1.Departamento de FísicaUniversidad de OviedoOviedoSpain
  2. 2.Dipartimento di FisicaUniversità di Milano-Bicocca and INFN — Sezione di Milano-BicoccaMilanoItaly
  3. 3.C.N. Yang Institute for Theoretical Physics, SUNYStony BrookUnited States
  4. 4.Department of MathematicsUniversity of SurreyGuildfordUnited Kingdom
  5. 5.Kavli Institute for Theoretical Physics China, Institute for Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations