Vacuum metastability with black holes

  • Philipp Burda
  • Ruth GregoryEmail author
  • Ian G. Moss
Open Access
Regular Article - Theoretical Physics


We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.


Solitons Monopoles and Instantons Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].
  2. [2]
    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].
  3. [3]
    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Gorsky, A. Mironov, A. Morozov and T.N. Tomaras, Is the standard model saved asymptotically by conformal symmetry?, J. Exp. Theor. Phys. 120 (2015) 344 [arXiv:1409.0492] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Bezrukov and M. Shaposhnikov, Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys. 120 (2015) 335 [arXiv:1411.1923] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Ellis, Discrete glimpses of the physics landscape after the Higgs discovery, J. Phys. Conf. Ser. 631 (2015) 012001 [arXiv:1501.05418] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    K. Blum, R.T. D’Agnolo and J. Fan, Vacuum stability bounds on Higgs coupling deviations in the absence of new bosons, JHEP 03 (2015) 166 [arXiv:1502.01045] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    M.E. Bracco, G. Krein and M. Nielsen, Quark meson coupling model with constituent quarks: exchange and pionic effects, Phys. Lett. B 432 (1998) 258 [nucl-th/9805019] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M.S. Turner and F. Wilczek, Is our vacuum metastable, Nature D 79 (1982) 633.ADSCrossRefGoogle Scholar
  11. [11]
    M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    J.R. Espinosa, G.F. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  18. [18]
    C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].ADSGoogle Scholar
  19. [19]
    S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    I. Yu. Kobzarev, L.B. Okun and M.B. Voloshin, Bubbles in metastable vacuum, Sov. J. Nucl. Phys. 20 (1975) 644 [INSPIRE].
  21. [21]
    R. Gregory, I.G. Moss and B. Withers, Black holes as bubble nucleation sites, JHEP 03 (2014) 081 [arXiv:1401.0017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    W.A. Hiscock, Can black holes nucleate vacuum phase transitions?, Phys. Rev. D 35 (1987) 1161 [INSPIRE].ADSGoogle Scholar
  23. [23]
    V.A. Berezin, V.A. Kuzmin and I.I. Tkachev, O(3) invariant tunneling in general relativity, Phys. Lett. B 207 (1988) 397 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Sasaki and D.-h. Yeom, Thin-shell bubbles and information loss problem in Anti de Sitter background, JHEP 12 (2014) 155 [arXiv:1404.1565] [INSPIRE].
  25. [25]
    A. Shkerin and S. Sibiryakov, On stability of electroweak vacuum during inflation, Phys. Lett. B 746 (2015) 257 [arXiv:1503.02586] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    P. Burda, R. Gregory and I. Moss, Gravity and the stability of the Higgs vacuum, Phys. Rev. Lett. 115 (2015) 071303 [arXiv:1501.04937] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Mellor and I. Moss, Black holes and quantum wormholes, Phys. Lett. B 222 (1989) 361 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    F. Mellor and I. Moss, Black holes and gravitational instantons, Class. Quant. Grav. 6 (1989) 1379 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S.W. Hawking and N. Turok, Open inflation without false vacua, Phys. Lett. B 425 (1998) 25 [hep-th/9802030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    N. Turok and S.W. Hawking, Open inflation, the four form and the cosmological constant, Phys. Lett. B 432 (1998) 271 [hep-th/9803156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A.R. Brown and E.J. Weinberg, Thermal derivation of the Coleman-De Luccia tunneling prescription, Phys. Rev. D 76 (2007) 064003 [arXiv:0706.1573] [INSPIRE].ADSGoogle Scholar
  32. [32]
    I.G. Moss, Black hole bubbles, Phys. Rev. D 32 (1985) 1333 [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    C. Cheung and S. Leichenauer, Limits on new physics from black holes, Phys. Rev. D 89 (2014) 104035 [arXiv:1309.0530] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    B. Bergerhoff, M. Lindner and M. Weiser, Dynamics of metastable vacua in the early universe, Phys. Lett. B 469 (1999) 61 [hep-ph/9909261] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Greenwood, E. Halstead, R. Poltis and D. Stojkovic, Dark energy, the electroweak vacua and collider phenomenology, Phys. Rev. D 79 (2009) 103003 [arXiv:0810.5343] [INSPIRE].ADSGoogle Scholar
  39. [39]
    V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, Phys. Rev. Lett. 111 (2013) 241801 [arXiv:1307.5193] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    V. Branchina, E. Messina and M. Sher, Lifetime of the electroweak vacuum and sensitivity to Planck scale physics, Phys. Rev. D 91 (2015) 013003 [arXiv:1408.5302] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Eichhorn, H. Gies, J. Jaeckel, T. Plehn, M.M. Scherer and R. Sondenheimer, The Higgs mass and the scale of new physics, JHEP 04 (2015) 022 [arXiv:1501.02812] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    F. Loebbert and J. Plefka, Quantum gravitational contributions to the standard model effective potential and vacuum stability, arXiv:1502.03093 [INSPIRE].
  43. [43]
    Z. Lalak, M. Lewicki and P. Olszewski, Higher-order scalar interactions and SM vacuum stability, JHEP 05 (2014) 119 [arXiv:1402.3826] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44 (1966) 4349.Google Scholar
  45. [45]
    P. Bowcock, C. Charmousis and R. Gregory, General brane cosmologies and their global space-time structure, Class. Quant. Grav. 17 (2000) 4745 [hep-th/0007177] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    R. Gregory and A. Padilla, Nested brane worlds and strong brane gravity, Phys. Rev. D 65 (2002) 084013 [hep-th/0104262] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Aguirre and M.C. Johnson, Dynamics and instability of false vacuum bubbles, Phys. Rev. D 72 (2005) 103525 [gr-qc/0508093] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Aguirre and M.C. Johnson, Two tunnels to inflation, Phys. Rev. D 73 (2006) 123529 [gr-qc/0512034] [INSPIRE].ADSGoogle Scholar
  49. [49]
    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  50. [50]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    F.A. Bais and R.J. Russell, Magnetic monopole solution of nonabelian gauge theory in curved space-time, Phys. Rev. D 11 (1975) 2692 [Erratum ibid. D 12 (1975) 3368] [INSPIRE].
  52. [52]
    Y.M. Cho and P.G.O. Freund, Gravitatingt Hooft monopoles, Phys. Rev. D 12 (1975) 1588 [Erratum ibid. D 13 (1976) 531] [INSPIRE].
  53. [53]
    G.W. Gibbons, Vacuum polarization and the spontaneous loss of charge by black holes, Commun. Math. Phys. 44 (1975) 245.ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    B.J. Carr and S.W. Hawking, Black holes in the early universe, Mon. Not. Roy. Astron. Soc. 168 (1974) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].ADSGoogle Scholar
  56. [56]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S.B. Giddings and S.D. Thomas, High-energy colliders as black hole factories: the end of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [INSPIRE].ADSGoogle Scholar
  62. [62]
    P. Kanti and E. Winstanley, Hawking radiation from higher-dimensional black holes, Fundam. Theor. Phys. 178 (2015) 229 [arXiv:1402.3952] [INSPIRE].MathSciNetGoogle Scholar
  63. [63]
    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    P. Kanti, Black holes in theories with large extra dimensions: a review, Int. J. Mod. Phys. A 19 (2004) 4899 [hep-ph/0402168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    R. Gregory, Braneworld black holes, Lect. Notes Phys. 769 (2009) 259 [arXiv:0804.2595] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    N. Dadhich, R. Maartens, P. Papadopoulos and V. Rezania, Black holes on the brane, Phys. Lett. B 487 (2000) 1 [hep-th/0003061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    S.W. Hawking and G.T. Horowitz, The gravitational hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    R. Gregory and A. Padilla, Brane world instantons, Class. Quant. Grav. 19 (2002) 279 [hep-th/0107108] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    R. Emparan, G.T. Horowitz and R.C. Myers, Black holes radiate mainly on the brane, Phys. Rev. Lett. 85 (2000) 499 [hep-th/0003118] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    C.M. Harris and P. Kanti, Hawking radiation from a (4 + n)-dimensional black hole: exact results for the Schwarzschild phase, JHEP 10 (2003) 014 [hep-ph/0309054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Centre for Particle TheoryDurham UniversityDurhamUnited Kingdom
  2. 2.Perimeter InstituteWaterlooCanada
  3. 3.School of Mathematics and StatisticsNewcastle UniversityNewcastle Upon TyneUnited Kingdom

Personalised recommendations