Advertisement

Next-to-leading order QCD corrections to the decay width H

  • Roberto Bonciani
  • Vittorio Del Duca
  • Hjalte Frellesvig
  • Johannes M. Henn
  • Francesco Moriello
  • Vladimir A. Smirnov
Open Access
Regular Article - Theoretical Physics

Abstract

We present the analytic calculation of the two-loop QCD corrections to the decay width of a Higgs boson into a photon and a Z boson. The calculation is carried out using integration-by-parts identities for the reduction to master integrals of the scalar integrals, in terms of which we express the amplitude. The calculation of the master integrals is performed using differential equations applied to a set of functions suitably chosen to be of uniform weight. The final result is expressed in terms of logarithms and polylogarithmic functions Li2, Li3, Li4 and Li2,2.

Keywords

Higgs Physics QCD Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  4. [4]
    CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, Phys. Lett. B 726 (2013) 587 [arXiv:1307.5515] [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for Higgs boson decays to a photon and a Z boson in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Phys. Lett. B 732 (2014) 8 [arXiv:1402.3051] [INSPIRE].
  6. [6]
    R.N. Cahn, M.S. Chanowitz and N. Fleishon, Higgs particle production by Z, Phys. Lett. B 82 (1979) 113 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L. Bergstrom and G. Hulth, Induced Higgs couplings to neutral bosons in e + e collisions, Nucl. Phys. B 259 (1985) 137 [Erratum ibid. B 276 (1986) 744] [INSPIRE].
  8. [8]
    I. Low, J. Lykken and G. Shaughnessy, Singlet scalars as Higgs imposters at the Large Hadron Collider, Phys. Rev. D 84 (2011) 035027 [arXiv:1105.4587] [INSPIRE].ADSGoogle Scholar
  9. [9]
    I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Azatov, R. Contino, A. Di Iura and J. Galloway, New prospects for Higgs compositeness in h, Phys. Rev. D 88 (2013) 075019 [arXiv:1308.2676] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Carena, I. Low and C.E.M. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C.-W. Chiang and K. Yagyu, Higgs boson decays to γγ and Zγ in models with Higgs extensions, Phys. Rev. D 87 (2013) 033003 [arXiv:1207.1065] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C.-S. Chen, C.-Q. Geng, D. Huang and L.-H. Tsai, New scalar contributions to h, Phys. Rev. D 87 (2013) 075019 [arXiv:1301.4694] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Spira, A. Djouadi and P.M. Zerwas, QCD corrections to the HZγ coupling, Phys. Lett. B 276 (1992) 350 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.J.G. Veltman, Diagrammatica: the path to Feynman rules, Cambridge Lect. Notes Phys. 4 (1994) 1 [INSPIRE].Google Scholar
  16. [16]
    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  19. [19]
    C.G. Bollini and J.J. Giambiagi, Lowest order divergent graphs in ν-dimensional space, Phys. Lett. B 40 (1972) 566 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim. B 12 (1972) 20 [INSPIRE].Google Scholar
  21. [21]
    J.F. Ashmore, A method of gauge invariant regularization, Lett. Nuovo Cim. 4 (1972) 289 [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    G.M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Lett. Nuovo Cim. 4 (1972) 329 [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    R. Gastmans and R. Meuldermans, Dimensional regularization of the infrared problem, Nucl. Phys. B 63 (1973) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.V. Smirnov, Algorithm FIREFeynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2014) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
  29. [29]
    F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A.V. Kotikov, Differential equations method: the calculation of vertex type Feynman diagrams, Phys. Lett. B 259 (1991) 314 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The master differential equations for the two loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [hep-th/9805118] [INSPIRE].ADSGoogle Scholar
  36. [36]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Argeri and P. Mastrolia, Feynman diagrams and differential equations, Int. J. Mod. Phys. A 22 (2007) 4375 [arXiv:0707.4037] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.M. Henn and V.A. Smirnov, Analytic results for two-loop master integrals for Bhabha scattering I, JHEP 11 (2013) 041 [arXiv:1307.4083] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Argeri et al., Magnus and Dyson series for master integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Höschele, J. Hoff and T. Ueda, Adequate bases of phase space master integrals for ggh at NNLO and beyond, JHEP 09 (2014) 116 [arXiv:1407.4049] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    F. Dulat and B. Mistlberger, Real-virtual-virtual contributions to the inclusive Higgs cross section at N3LO, arXiv:1411.3586 [INSPIRE].
  48. [48]
    G. Bell and T. Huber, Master integrals for the two-loop penguin contribution in non-leptonic B-decays, JHEP 12 (2014) 129 [arXiv:1410.2804] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Huber and S. Kränkl, Two-loop master integrals for non-leptonic heavy-to-heavy decays, JHEP 04 (2015) 140 [arXiv:1503.00735] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    C. Kurz, Two-loop QCD corrections for the production and decays of Higgs bosons, Diploma Thesis, University of Freiburg, Freiburg Germany December 2005.Google Scholar
  53. [53]
    K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    D.J. Broadhurst, Massive three-loop Feynman diagrams reducible to SC * primitives of algebras of the sixth root of unity, Eur. Phys. J. C 8 (1999) 311 [hep-th/9803091] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    A.V. Smirnov and M.N. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: parallelizeable multiloop numerical calculations, Comput. Phys. Commun. 182 (2011) 790 [arXiv:0912.0158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    A.V. Smirnov, FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, Comput. Phys. Commun. 185 (2014) 2090 [arXiv:1312.3186] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces \( {\mathfrak{M}}_{0,n} \), Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  63. [63]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    T. Gehrmann, S. Guns and D. Kara, The rare decay HZγ in perturbative QCD, in preparation.Google Scholar
  66. [66]
    L.-B. Chen, C.-F. Qiao and R.-L. Zhu, Reconstructing the 125 GeV SM Higgs boson through \( \ell \overline{\ell}\gamma \), Phys. Lett. B 726 (2013) 306 [arXiv:1211.6058] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    D.A. Dicus and W.W. Repko, Calculation of the decay H → eēγ, Phys. Rev. D 87 (2013) 077301 [arXiv:1302.2159] [INSPIRE].ADSGoogle Scholar
  68. [68]
    Y. Sun, H.-R. Chang and D.-N. Gao, Higgs decays to gamma ℓ + in the standard model, JHEP 05 (2013) 061 [arXiv:1303.2230] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    G. Passarino, Higgs boson production and decay: Dalitz sector, Phys. Lett. B 727 (2013) 424 [arXiv:1308.0422] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    D.A. Dicus, C. Kao and W.W. Repko, Comparison of \( H\to \ell \overline{\ell}\gamma \) and \( H\to \gamma Z,Z\to \ell \overline{\ell} \) including the ATLAS cuts, Phys. Rev. D 89 (2014) 033013 [arXiv:1310.4380] [INSPIRE].ADSGoogle Scholar
  71. [71]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    J. Kublbeck, M. Böhm and A. Denner, Feyn Arts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  74. [74]
    J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Roberto Bonciani
    • 1
  • Vittorio Del Duca
    • 2
    • 3
  • Hjalte Frellesvig
    • 4
  • Johannes M. Henn
    • 5
  • Francesco Moriello
    • 1
  • Vladimir A. Smirnov
    • 6
  1. 1.Dipartimento di Fisica, Università di Roma “La Sapienza” and INFN Sezione di RomaRomaItaly
  2. 2.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  3. 3.INFN Laboratori Nazionali di FrascatiFrascati (Roma)Italy
  4. 4.Institute of Nuclear and Particle Physics, NCSR “Demokritos”Agia ParaskeviGreece
  5. 5.School of Natural SciencesInstitute for Advanced StudyPrincetonUnited States
  6. 6.Skobeltsyn Inst. of Nuclear Physics, Moscow State UniversityMoscowRussia

Personalised recommendations