Advertisement

Dessins d’enfants in \( \mathcal{N}=2 \) generalised quiver theories

  • Yang-Hui He
  • James ReadEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We study Grothendieck’s dessins denfants in the context of the \( \mathcal{N}=2 \) supersymmetric gauge theories in (3 + 1) dimensions with product SU (2) gauge groups which have recently been considered by Gaiotto et al.. We identify the precise context in which dessins arise in these theories: they are the so-called ribbon graphs of such theories at certain isolated points in the moduli space. With this point in mind, we highlight connections to other work on trivalent dessins, gauge theories, and the modular group.

Keywords

Supersymmetric gauge theory Gauge Symmetry Differential and Algebraic Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in \( \mathcal{N}=2 \) supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  2. [2]
    Y.-H. He and J. McKay, \( \mathcal{N}=2 \) gauge theories: congruence subgroups, coset graphs and modular surfaces, J. Math. Phys. 54 (2013) 012301 [arXiv:1201.3633] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Hanany and N. Mekareeya, Tri-vertices and SU(2)’s, JHEP 02 (2011) 069 [arXiv:1012.2119] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D. Gaiotto, \( \mathcal{N}=2 \) dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  7. [7]
    M. Alim et al., \( \mathcal{N}=2 \) quantum field theories and their BPS quivers, Adv. Theor. Math. Phys. 18 (2014) 27 [arXiv:1112.3984] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Alim et al., BPS quivers and spectra of complete \( \mathcal{N}=2 \) quantum field theories, Commun. Math. Phys. 323 (2013) 1185 [arXiv:1109.4941] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Cecotti and C. Vafa, Classification of complete \( \mathcal{N}=2 \) supersymmetric theories in 4 dimensions, Surveys in differential geometry 18 (2013) 19 [arXiv:1103.5832] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S.K. Ashok, F. Cachazo and E. Dell’Aquila, Strebel differentials with integral lengths and Argyres-Douglas singularities, hep-th/0610080 [INSPIRE].
  11. [11]
    S.K. Ashok, F. Cachazo and E. Dell’Aquila, Childrens drawings from Seiberg-Witten curves, Commun. Num. Theor. Phys. 1 (2007) 237 [hep-th/0611082] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Mulase and M. Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \( \overline{Q} \), Asian J. Math. 2 (1998) 875 [math-ph/9811024].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y.-H. He, J. McKay and J. Read, Modular subgroups, dessins denfants and elliptic K3 surfaces, LMS J. Comp. Math. 16 (2013) 271 [arXiv:1211.1931] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J. McKay, Graphs, singularities and finite groups, Proc. Symp. Pure Math. 37 (1980) 183.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Hanany and Y.-H. He, Non-Abelian finite gauge theories, JHEP 02 (1999) 013 [hep-th/9811183] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    K. Strebel, Quadratic differentials, Series of Modern Surveys in Mathematics 5, Springer, Germany (1984).Google Scholar
  17. [17]
    E. Girondo and G. González-Diez, Introduction to compact Riemann surfaces and dessins denfants, London Mathematical Society Student Texts 79, Cambridge University Press, Cambridge U.K. (2012).Google Scholar
  18. [18]
    P. Lochak and L. Schneps eds., Geometric Galois actions 1, London Mathematical Society Lecture Note Series 242, Cambridge University Press, Cambridge U.K. (1997).Google Scholar
  19. [19]
    P. Lochak and L. Schneps eds., Geometric Galois actions 2, London Mathematical Society Lecture Note Series 243, Cambridge University Press, Cambridge U.K. (1997).Google Scholar
  20. [20]
    L. Schneps ed., The Grothendieck theory of dessins denfants, London Mathematical Society Lecture Note Series 200, Cambridge University Press, Cambridge U.K. (1994).Google Scholar
  21. [21]
    G.A. Jones and D. Singerman, Belyi functions, hypermaps and Galois groups, Bull. London Math. Soc. 28 (1996) 561.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J. McKay and A. Sebbar, J-invariants of arithmetic semistable elliptic surfaces and graphs, in Proceedings on Moonshine and related topics, Montréal QC Canada 1999, CRM Proceedings and Lecture Notes 30, American Mathematical Society, New York U.S.A. (2001), pg. 119.Google Scholar
  23. [23]
    E. Goins, Dessin explorer, Mathematica notebook, http://www.math.purdue.edu/~egoins/site//Dessins%20d%27Enfants.html, (2012).
  24. [24]
    N. Magot and A. Zvonkin, Belyi functions for Archimedean solids, Discr. Math. 217 (2000) 249.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Wood, Belyi-extending maps and the Galois action on dessins denfants, Publ. RIMS Kyoto Univ. 42 (2006) 721 [math/0304489].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Y. Tachikawa, \( \mathcal{N}=2 \) supersymmetric dynamics for pedestrians, Lect. Notes Phys. 890 (2015) 1 [arXiv:1312.2684].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R.C. Read, Some enumeration problems in graph theory, Ph.D. dissertation, University of London, London U.K. (1958).Google Scholar
  28. [28]
    R.W. Robinson, Counting cubic graphs, J. Graph Theor. 1 (1977) 285.CrossRefzbMATHGoogle Scholar
  29. [29]
    R.W. Robinson and N.C. Wormald, Numbers of cubic graphs, J. Graph Theor. 7 (1983) 463.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    V. Jejjala, S. Ramgoolam and D. Rodriguez-Gomez, Toric CFTs, permutation triples and Belyi pairs, JHEP 03 (2011) 065 [arXiv:1012.2351] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Theisen and S. Yankielowicz, On the M-theory approach to (compactified) 5D field theories, Phys. Lett. B 415 (1997) 127 [hep-th/9709010] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    F. Beukers and H. Montanus, Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps, in Number theory and polynomials, Lond. Math. Soc. Lect. Note Ser. 352, Cambridge University Press, Cambridge U.K. (2008), pg. 33.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of MathematicsCity University LondonLondonUnited Kingdom
  2. 2.School of PhysicsNanKai UniversityTianjinChina
  3. 3.Merton CollegeUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations