Worldsheet instantons and (0,2) linear models

Open Access
Regular Article - Theoretical Physics

Abstract

We study the stability of heterotic compactifications described by (0,2) gauged linear sigma models with respect to worldsheet instanton corrections to the space-time superpotential following the work of Beasley and Witten [1]. We show that generic models elude the vanishing theorem proved there, and may not determine supersymmetric heterotic vacua. We then construct a subclass of linear models for which a vanishing theorem holds, generating an extensive list of consistent heterotic backgrounds.

Keywords

Superstrings and Heterotic Strings Superstring Vacua 

References

  1. [1]
    C. Beasley and E. Witten, Residues and world sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative effects on the string world sheet, Nucl. Phys. B 278 (1986) 769 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    L.J. Dixon, Some world sheet properties of superstring compactifications, on orbifolds and otherwise, lectures given at the 1987 ICTP Summer Workshop in High Energy Phsyics and Cosmology, June 29–August 7, Trieste, Italy (1987).Google Scholar
  4. [4]
    J. Distler, Resurrecting (2,0) compactifications, Phys. Lett. B 188 (1987) 431 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    J. Distler and B.R. Greene, Aspects of (2,0) string compactifications, Nucl. Phys. B 304 (1988) 1 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    P. Berglund, P. Candelas, X. de la Ossa, E. Derrick, J. Distler and T. Hubsch, On the instanton contributions to the masses and couplings of E 6 singlets, Nucl. Phys. B 454 (1995) 127 [hep-th/9505164] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion curves, part A: direct computation, JHEP 10 (2007) 022 [hep-th/0703182] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    P.S. Aspinwall and M.R. Plesser, Elusive worldsheet instantons in heterotic string compactifications, Proc. Symp. Pure Math. 85 (2012) 33 [arXiv:1106.2998] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    E. Silverstein and E. Witten, Criteria for conformal invariance of (0, 2) models, Nucl. Phys. B 444 (1995) 161 [hep-th/9503212] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    A. Basu and S. Sethi, World sheet stability of (0, 2) linear σ-models, Phys. Rev. D 68 (2003) 025003 [hep-th/0303066] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    D.R. Morrison and M.R. Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    J. Distler, Notes on (0,2) superconformal field theories, hep-th/9502012.
  14. [14]
    M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nonperturbative effects on the string world sheet. 2, Nucl. Phys. B 289 (1987) 319 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    J. McOrist and I.V. Melnikov, Summing the instantons in half-twisted linear σ-models, JHEP 02 (2009) 026 [arXiv:0810.0012] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    P.S. Aspinwall and B. Gaines, Rational curves and (0, 2)-deformations, J. Geom. Phys. 88 (2014) 1 [arXiv:1404.7802] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    R. Donagi, Z. Lu and I.V. Melnikov, Global aspects of (0, 2) moduli space: toric varieties and tangent bundles, Commun. Math. Phys. 338 (2015) 1197 [arXiv:1409.4353] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    M. Bertolini, I.V. Melnikov and M.R. Plesser, Hybrid conformal field theories, JHEP 05 (2014) 043 [arXiv:1307.7063] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    M. Bertolini, I.V. Melnikov and M.R. Plesser, Accidents in (0, 2) Landau-Ginzburg theories, JHEP 12 (2014) 157 [arXiv:1405.4266] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).Google Scholar
  21. [21]
    S.H. Katz and E. Sharpe, Notes on certain (0, 2) correlation functions, Commun. Math. Phys. 262 (2006) 611 [hep-th/0406226] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Center for Geometry and Theoretical Physics, Box 90318, Duke UniversityDurhamU.S.A.
  2. 2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations