Advertisement

ZZ production at high transverse momenta beyond NLO QCD

  • Francisco Campanario
  • Michael Rauch
  • Sebastian Sapeta
Open Access
Regular Article - Theoretical Physics

Abstract

We study the production of the four-lepton final state ++, predominantly produced by a pair of electroweak Z bosons, ZZ. Using the LoopSim method, we merge NLO QCD results for ZZ and ZZ+jet and obtain approximate NNLO predictions for ZZ production. The exact gluon-fusion loop-squared contribution to the ZZ process is also included. On top of that, we add to our merged sample the gluon-fusion ZZ+jet contributions from the gluon-gluon channel, which is formally of N3LO and provides approximate results at NLO for the gluon-fusion mechanism. The predictions are obtained with the VBFNLO package and include the leptonic decays of the Z bosons with all off-shell and spin-correlation effects, as well as virtual photon contributions. We compare our predictions with existing results for the total inclusive cross section at NNLO and find a very good agreement. Then, we present results for differential distributions for two experimental setups, one used in searches for anomalous triple gauge boson couplings, the other in Higgs analyses in the four charged-lepton final state channel. We find that the approximate NNLO corrections are large, reaching up to 20% at high transverse momentum of the Z boson or the leading lepton, and are not covered by the NLO scale uncertainties. Distributions of the four-lepton invariant mass are, however, stable with respect to QCD corrections at this order.

Keywords

NLO Computations Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gge e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond Geolocating: Constraining Higher Dimensional Operators in H → 4ℓ with Off-Shell Production and More, Phys. Rev. D 91 (2015) 035011 [arXiv:1403.4951] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C. Englert and M. Spannowsky, Limitations and Opportunities of Off-Shell Coupling Measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].ADSGoogle Scholar
  6. [6]
    G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling New Physics with off-shell measurements, Phys. Rev. Lett. 113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    ATLAS collaboration, Measurement of ZZ production in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector, JHEP 03 (2013) 128 [arXiv:1211.6096] [INSPIRE].
  8. [8]
    CMS collaboration, Measurement of the ppZZ production cross section and constraints on anomalous triple gauge couplings in four-lepton final states at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 740 (2015)250 [arXiv:1406.0113] [INSPIRE].
  9. [9]
    R.W. Brown and K.O. Mikaelian, W + W and Z0 Z0 Pair Production in e + e , pp, \( p\overline{p} \) Colliding Beams, Phys. Rev. D 19 (1979) 922 [INSPIRE].ADSGoogle Scholar
  10. [10]
    B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Ohnemus and J.F. Owens, An Order α s calculation of hadronic ZZ production, Phys. Rev. D 43 (1991) 3626 [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].ADSGoogle Scholar
  13. [13]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : Lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. Campanario and S. Sapeta, WZ production beyond NLO for high-pT observables, Phys. Lett. B 718 (2012) 100 [arXiv:1209.4595] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Campanario, M. Rauch and S. Sapeta, W + W production at high transverse momenta beyond NLO, Nucl. Phys. B 879 (2014) 65 [arXiv:1309.7293] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    D.A. Dicus, C. Kao and W.W. Repko, Gluon Production of Gauge Bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].ADSGoogle Scholar
  18. [18]
    E.W.N. Glover and J.J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Matsuura and J.J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].Google Scholar
  20. [20]
    C. Zecher, T. Matsuura and J.J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N.E. Adam et al., Higgs Working Group Summary Report, arXiv:0803.1154 [INSPIRE].
  22. [22]
    T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp\to ZZ\to l\overline{l}l^{\prime}\overline{l}^{\prime } \), arXiv:0807.0024 [INSPIRE].
  23. [23]
    F. Campanario, Q. Li, M. Rauch and M. Spira, ZZ+jet production via gluon fusion at the LHC, JHEP 06 (2013) 069 [arXiv:1211.5429] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP 06 (2015) 129 [arXiv:1503.08759] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for ggV_1V_2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Baglio, L.D. Ninh and M.M. Weber, Full NLO massive gauge boson pair production at the LHC, arXiv:1310.3972 [INSPIRE].
  28. [28]
    T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ+jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to ZZ production in association with two jets, JHEP 07 (2014) 148 [arXiv:1405.3972] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in quark-antiquark collisions, JHEP 11 (2014) 041 [arXiv:1408.6409] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q\overline{q}^{\prime}\to {V}_1{V}_2\to 4 \) leptons, arXiv:1503.04812 [INSPIRE].
  33. [33]
    T. Gehrmann et al., W + W Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Rubin, G.P. Salam and S. Sapeta, https://loopsim.hepforge.org.
  36. [36]
    K. Arnold et al., VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    K. Arnold et al., VBFNLO: A Parton Level Monte Carlo for Processes with Electroweak Bosons – Manual for Version 2.5.0, arXiv:1107.4038 [INSPIRE].
  38. [38]
    J. Baglio et al., Release Note - VBFNLO 2.7.0, arXiv:1404.3940 [INSPIRE].
  39. [39]
    D. Maître and S. Sapeta, Simulated NNLO for high-p_T observables in vector boson + jets production at the LHC, Eur. Phys. J. C 73 (2013) 2663 [arXiv:1307.2252] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  41. [41]
    L.D. Landau, On the angular momentum of a two-photon system, Dokl. Akad. Nauk Ser. Fiz. 60 (1948) 207.Google Scholar
  42. [42]
    C.-N. Yang, Selection Rules for the Dematerialization of a Particle Into Two Photons, Phys. Rev. 77 (1950) 242 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for Wγγ +jet production at hadron colliders, Phys. Lett. B 704 (2011) 515 [arXiv:1106.4009] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Hagiwara and D. Zeppenfeld, Amplitudes for Multiparton Processes Involving a Current at e + e , e ± p, and Hadron Colliders, Nucl. Phys. B 313 (1989) 560 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    F. Campanario, Towards ppVVjj at NLO QCD: Bosonic contributions to triple vector boson production plus jet, JHEP 10 (2011) 070 [arXiv:1105.0920] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  47. [47]
    M.S. Chanowitz, M. Furman and I. Hinchliffe, The Axial Current in Dimensional Regularization, Nucl. Phys. B 159 (1979) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  49. [49]
    G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
  50. [50]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S. Dittmaier, Separation of soft and collinear singularities from one loop N point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    T. Hahn and M. Rauch, News from FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 157 (2006) 236 [hep-ph/0601248] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, An algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (2005) 015 [hep-ph/0504267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    T. Hahn, Automatic loop calculations with FeynArts, FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 89 (2000) 231 [hep-ph/0005029] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    T. Hahn, A Mathematica interface for FormCalc-generated code, Comput. Phys. Commun. 178 (2008) 217 [hep-ph/0611273] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Rauch, Quantum Effects in Higgs-Boson Production Processes at Hadron Colliders, arXiv:0804.2428 [INSPIRE].
  59. [59]
    C. Groß, T. Hahn, S. Heinemeyer, F. von der Pahlen, H. Rzehak and C. Schappacher, New Developments in FormCalc 8.4, PoS(LL2014)035 arXiv:1407.0235.
  60. [60]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  61. [61]
    J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions +γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross sections in deep-inelastic scattering, hep-ph/9907280 [INSPIRE].
  66. [66]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k_t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Cacciari, G.P. Salam and G. Soyez, http://fastjet.fr/.
  68. [68]
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multijet cross-sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  70. [70]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  71. [71]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE]
  74. [74]
    S. Frixione, P. Nason and G. Ridolfi, Strong corrections to W Z production at hadron colliders, Nucl. Phys. B 383 (1992) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    F. Campanario, R. Roth and D. Zeppenfeld, QCD radiation in W H and W Z production and anomalous coupling measurements, Phys. Rev. D 91 (2015) 054039 [arXiv:1410.4840] [INSPIRE].ADSGoogle Scholar
  76. [76]
    CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002.

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Francisco Campanario
    • 1
    • 2
  • Michael Rauch
    • 2
  • Sebastian Sapeta
    • 3
  1. 1.Theory Division, IFIC, University of Valencia-CSICPaternaSpain
  2. 2.Institute for Theoretical Physics, Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.CERN PH-THGeneva 23Switzerland

Personalised recommendations