D-brane on deformed AdS3 × S3

Open Access
Regular Article - Theoretical Physics

Abstract

We study D1-brane in AdS3 × S3κ-deformed background with non-trivial dilaton and Ramond-Ramond fields. We consider purely time-dependent and spatially-dependent ansatz where we study the solutions of the equations of motion for D1-brane in given background. We find that the behavior of these solutions crucially depends on the value of the parameter a that was introduced in [7].

Keywords

D-branes AdS-CFT Correspondence 

References

  1. [1]
    C.V. Johnson, D-branes, Cambridge University Press, Cambridge, U.K. (2003).MATHGoogle Scholar
  2. [2]
    C.V. Johnson, D-brane primer, hep-th/0007170.
  3. [3]
    J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  4. [4]
    B. Hoare, R. Roiban and A.A. Tseytlin, On deformations of AdS n × S n supercosets, JHEP 06 (2014) 002 [arXiv:1403.5517] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-deformed AdS 5 × S 5, JHEP 04 (2014) 002 [arXiv:1312.3542] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    M. Khouchen and J. Kluson, Giant magnon on deformed AdS 3 × S 3, Phys. Rev. D 90 (2014) 066001 [arXiv:1405.5017] [INSPIRE].ADSGoogle Scholar
  7. [7]
    O. Lunin, R. Roiban and A.A. Tseytlin, Supergravity backgrounds for deformations of AdS n × S n supercoset string models, Nucl. Phys. B 891 (2015) 106 [arXiv:1411.1066] [INSPIRE].CrossRefMATHADSGoogle Scholar
  8. [8]
    B. Hoare and A.A. Tseytlin, On integrable deformations of superstring σ-models related to AdS n × S n supercosets, Nucl. Phys. B 897 (2015) 448 [arXiv:1504.07213] [INSPIRE].CrossRefMATHADSGoogle Scholar
  9. [9]
    S.J. van Tongeren, On classical Yang-Baxter based deformations of the AdS 5 × S 5 superstring, JHEP 06 (2015) 048 [arXiv:1504.05516] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    A. Banerjee, S. Bhattacharya and K.L. Panigrahi, Spiky strings in κ-deformed AdS, JHEP 06 (2015) 057 [arXiv:1503.07447] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    K.L. Panigrahi, P.M. Pradhan and M. Samal, Pulsating strings on (AdS 3 × ×S 3 ) κ, JHEP 03 (2015) 010 [arXiv:1412.6936] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    G. Arutyunov and S.J. van Tongeren, Double Wick rotating Green-Schwarz strings, JHEP 05 (2015) 027 [arXiv:1412.5137] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    B. Hoare, Towards a two-parameter q-deformation of AdS 3 × S 3 × M 4 superstrings, Nucl. Phys. B 891 (2015) 259 [arXiv:1411.1266] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    F. Delduc, M. Magro and B. Vicedo, Derivation of the action and symmetries of the q-deformed AdS 5 × S 5 superstring, JHEP 10 (2014) 132 [arXiv:1406.6286] [INSPIRE].CrossRefMATHADSGoogle Scholar
  15. [15]
    A. Banerjee and K.L. Panigrahi, On the rotating and oscillating strings in (AdS 3 × S 3 ) κ, JHEP 09 (2014) 048 [arXiv:1406.3642] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    G. Arutyunov and S.J. van Tongeren, AdS_5 × S5 mirror model as a string σ-model, Phys. Rev. Lett. 113 (2014) 261605 [arXiv:1406.2304] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The exact spectrum and mirror duality of the (AdS_5× S 5 )_η superstring, Theor. Math. Phys. 182 (2015) 23 [Teor. Mat. Fiz. 182 (2014) 28] [arXiv:1403.6104] [INSPIRE].
  18. [18]
    C. Bachas and M. Petropoulos, Anti-de Sitter D-branes, JHEP 02 (2001) 025 [hep-th/0012234] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    J. Raeymaekers and K.P. Yogendran, Supersymmetric D-branes in the D1-D5 background, JHEP 12 (2006) 022 [hep-th/0607150] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  20. [20]
    B. Janssen, Y. Lozano and D. Rodriguez-Gomez, Giant gravitons in AdS 3 × S 3 × T 4 as fuzzy cylinders, Nucl. Phys. B 711 (2005) 392 [hep-th/0406148] [INSPIRE].CrossRefMATHADSGoogle Scholar
  21. [21]
    C. Ahn and P. Bozhilov, Finite-size giant magnons on η-deformed AdS 5 × S 5, Phys. Lett. B 737 (2014) 293 [arXiv:1406.0628] [INSPIRE].CrossRefMATHADSGoogle Scholar
  22. [22]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    T. Kameyama and K. Yoshida, Anisotropic Landau-Lifshitz σ-models from q-deformed AdS 5 × S 5 superstrings, JHEP 08 (2014) 110 [arXiv:1405.4467] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    C. Klimčík, Integrability of the bi-Yang-Baxter σ-model, Lett. Math. Phys. 104 (2014) 1095 [arXiv:1402.2105] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  25. [25]
    C. Klimčík, On integrability of the Yang-Baxter σ-model, J. Math. Phys. 50 (2009) 043508 [arXiv:0802.3518] [INSPIRE].MathSciNetCrossRefMATHADSGoogle Scholar
  26. [26]
    T. Kameyama and K. Yoshida, A new coordinate system for q-deformed AdS 5 × S 5 and classical string solutions, J. Phys. A 48 (2015) 075401 [arXiv:1408.2189] [INSPIRE].MATHADSGoogle Scholar
  27. [27]
    C. Klimčík, Yang-Baxter σ-models and dS/AdS T duality, JHEP 12 (2002) 051 [hep-th/0210095] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  28. [28]
    T. Kameyama and K. Yoshida, Minimal surfaces in q-deformed AdS 5 × S 5 with Poincaré coordinates, J. Phys. A 48 (2015) 245401 [arXiv:1410.5544] [INSPIRE].MATHADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations